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ABSTRACT
In this paper, we develop an efficient wavelet-based regularized lin-
ear quantile regression framework for coefficient estimations, where
the responses are scalars and the predictors include both scalars and
function. The framework consists of two important parts: wavelet
transformation and regularized linear quantile regression. Wavelet
transform can be used to approximate functional data through rep-
resenting it by finite wavelet coefficients and effectively capturing
its local features. Quantile regression is robust for response outliers
and heavy-tailed errors. In addition, comparing with other meth-
ods it provides a more complete picture of how responses change
conditional on covariates. Meanwhile, regularization can remove
small wavelet coefficients to achieve sparsity and efficiency. A novel
algorithm, Alternating Direction Method of Multipliers (ADMM) is
derived to solve the optimization problems. We conduct numerical
studies to investigate the finite sample performance of our method
and applied it on real data from ADHD studies.
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1. Introduction

With advances in technology, it is increasingly common to encounter data that are func-
tional or curves in nature, for example neuroimaging data [1,2]. A common feature of
many imaging techniques is that massive functional data are observed/calculated at the
same design points, such as time for functional images (e.g. positron emission tomogra-
phy (PET)) and arclength for structure imaging (e.g. diffusion tensor imaging (DTI)). In
recent literature, extensive research has been focusing on the functional linearmodel where
a scalar response is regressed on a functional predictor [3,4]. It has become a powerful sta-
tistical tool for functional data analysis. In our paper, we will consider the functional linear
regression, where the responses such as the neurological or clinical outcomes (e.g. atten-
tion deficit hyperactivity disorder (ADHD) index) aremodelled by a set of scalar covariates
and functional covariates of interest (e.g. hemodynamic response functions (HRF)).

Denote Y = (y1, y2, . . . , yn)T as a scalar vector response, U = (u1, u2, . . . un)T
as a n × s scalar matrix of predictors with i-th row uTi = (ui1, ui2 · · · , uis), δ =
(δ1, δ2, . . . , δs)T as the corresponding scalar coefficient vector, and Z(t) = (z1(t), z2(t),
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. . . , zn(t))T as the functional predictors, and η(t) as the corresponding functional coeffi-
cient. In addition, α is the intercept and εi’s are independent identically distributed (i.i.d.)
random errors. Therefore, a functional linear regression model can be written as follows:

yi = α + uiTδ +
∫

zi(t)η(t) dt + εi. (1)

In linear regression, the conditional mean of responses can be obtained by ordinary least
squares (OLS) estimates, and it is optimal under the assumption that error followsGaussian
distribution. However, it is common to observe non-Gaussian distributed errors, including
heavy-tailed ones, where OLS does not perform well [5]. Quantile regression has emerged
as an important statistical methodology and has been used widely in various disciplines,
such as biology, medicine, finance and economics. It is well known that the distribution
of data is typically skewed or data contain some outliers, the median regression, a special
case of quantile regression, provides more robust estimators than the mean regression. A
comprehensive survey of the theory of quantile regression and its applications can be found
in [6]. An alternative to model (1) is the functional linear quantile regression where the
conditional quantiles of the functional responses are modelled by a set of scalar covariates
and a functional covariate. We consider the quantile regression model as

Qτ (yi|ui, zi(t)) = ατ + uiTδ +
∫

zi(t)η(t) dt, (2)

for given τ ∈ (0, 1), where Qτ (yi|ui, zi(t)) is the τ -th conditional quantile of yi given
covariates ui and zi(t).

Many procedures have been proposed to approximate the functional coefficient η(t),
for example, functional principal component analysis (fPCA) based approaches [7–9],
B-spline with penalties [10,11], methods combining fPCA and penalization [12], partial
least squares (PLS) [4,13], and others. Among them, PLS bases can capture the information
of both the response and covariates, while fPCA bases only use the information of covari-
ates. As for smooth splines, the information of either response or explanatory variables is
not considered. In order to provide a good approximation of the functional coefficients,
a large number of bases should be chosen. However, this may cause overfitting [4] and
calculation is always limited. Therefore, less finite bases are desired to capture the local
information.

In this article, we prefer to use wavelets for efficiently approximating functions with a
relatively small number of nonzero wavelet coefficients [5]. Because wavelets are used to
transform the signals from time domain to frequency domain, where wavelet coefficients
are independent so that we can apply regularization to encourage sparse representation. Its
other advantage is the ability to capture the local information, including feature changes in
space or time [14]. As well, it is computationally efficient [3]. For a large variety of func-
tions, the wavelet decomposition allows good representation of the function by using only
a relatively small number of wavelet coefficients. A comprehensive survey of wavelet appli-
cations in statistics can be found in [15,16]. We apply the Least Absolute Shrinkage and
Selection Operator (LASSO) [17] to encourage sparse representation. Through discrete
wavelet transform, functional variables can be represented by a set of wavelet coefficients.
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Therefore, a problem of functional linear quantile regression can be converted into a prob-
lem of variable selection of the wavelet bases. The LASSOmethod is applied in the wavelet
domain to select wavelet coefficients.

Our methodology consists of two important parts: wavelet transformation and regular-
ized linear quantile regression. Wavelet transform can be used to approximate functional
data through representing it by finite wavelet coefficients and effectively capturing its
local features. Quantile regression is robust for response outliers and heavy-tailed errors.
In addition, comparing with other methods it provides a more complete picture of how
responses change conditional on covariates. Simultaneously, regularization can remove
small wavelet coefficients to achieve sparsity and efficiency. Under mild conditions, the
estimated functional coefficients converge to the true ones and the predicted response also
convergences.

The rest of the article is organized as follows. In Section 2, we introduce the wavelet-
based LASSO in functional linear quantile regression. In Section 3, we show the con-
vergence of the estimated functional coefficients and predicted responses. We derive the
ADMMalgorithm to solve the optimization problem in Section 4. Section 5 provides finite
sample performance through simulation studies and analyses a real data set fromanADHD
study. Section 6 concludes the article with discusses and future research directions.

2. Wavelet-based LASSO in functional linear quantile regression

2.1. Functional linear regressionwith wavelet basis

Wavelets are basis functions that can be used to efficiently approximate functions with
wavelet coefficients [5]. Given scaling functionφ, andwavelet functionψ , we can construct
a basis with dilation parameter j, and position parameter d as follows:

φjd(t) = 2j/2φ(2jt − d); ψjd(t) = 2j/2ψ(2jt − d),

where the value of d varies according to different decomposition level in the functions. The
power of φ(t) is more compact at low frequencies while the power of ψ(t) concentrates at
relatively high frequencies. Therefore, φ(t) is used to approximate the global properties
and ψ(t) is used to model the detailed local features. Given a specific decomposition level
jo, the orthonormal wavelet basis set is defined as {φj0d : d = 0, . . . , 2j0 − 1} ∪ {ψjd : j ≥
j0, d = 0, . . . , 2j − 1}.

We represent both the functional predictor z(t) and the coefficient function η(t) in
model (2) in terms of wavelet bases. In practice, the functional predictors zi(t)’s are sam-
pled at equally spaced discrete m points. Consequently, we can calculate maximum of
J = logm2 −1 levels of decomposition via discrete wavelet transformation. Thus, given j0,
the functional predictors zi(t)’s can be approximated by

zi(t) =
2j0−1∑
d=0

x′
iφ[j0, d]φj0d(t)+

J∑
j=j0

2j−1∑
d=0

xiψ [j, d]ψjd(t),

where the wavelet coefficients are defined by

x′
iφ[j0, d] =

∫
zi(t)φj0d(t) dt, xiψ [j, d] =

∫
zi(t)ψjd(t) dt, (3)
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where x′
iφ[j0, d] are called approximation coefficients and xiψ [j, d] are detailed coeffi-

cients. Similarly, we can decompose the coefficient function η(t) by discrete wavelet
transformation using the same bases

ηi(t) =
2j0−1∑
d=0

β ′
φ[j0, d]φj0d(t)+

J∑
j=j0

2j−1∑
d=0

βψ [j, d]ψjd(t),

where the wavelet coefficients are

β ′
φ[j0, d] =

∫
η(t)φj0d(t) dt, βψ [j, d] =

∫
η(t)ψjd(t) dt. (4)

At coarser level (smallm), the coefficients β detect global features of the data while at finer
levels (largem) they capture local features.

Due to the orthonormality of the wavelet bases, the quantile regression model (2) can
be rewritten as

Qτ (yi|ui, xi) = ατ + uiTδ + xiTβ , (5)

where xTi = (xi1, xi2, . . . , xim) is a vector of predictor variables that are the derived wavelet
coefficients, i = 1, . . . , n, in (3), andβ is am × 1 vector of coefficients in (4). The responses
yi, intercept α, the scalar predictor ui and scalar coefficient δ are defined the same as in (2).

2.2. Wavelet-based LASSO in functional linear quantile regression

Both functional predictor z(t) and their corresponding functional coefficient η(t) in quan-
tile regression (2) are transformed to linear combinations of wavelet bases. The wavelet
coefficients {xik}mk=1 become the predictors in transformed space and a few of m predic-
tor variables are likely useful in predicting the response variable y. It is interesting to note
that the functional regression problemmay be viewed as a variable selection problem. The
functional coefficient η is estimated by inverse discrete wavelet transform of a few impor-
tant wavelet coefficients with the same wavelet bases and the same decomposition level.
For more discussion, see [3,18,19].

Infinite dimensional nature of z(t) and η(t) in quantile regression model (2) has been
taken care of via wavelet coefficients resulting finite and low dimensional representa-
tion (5), that is,m-dimension.Wenowaim to estimate the coefficients in (5) and at the same
time select predictor variables that are effective in predicting response variable. LASSO
method [17] is useful for this purpose because it imposes L1 penalty on the coefficient
vector β to encourage sparsity.

The coefficient vector δ corresponding to scalar predictors is not affected by LASSO
penalty. Putting all these together, the parameters ατ , δ, and β , can be estimated by
minimizing the quantile loss function with shrinkage constraint. That is,

(α̂τ , δ̂, β̂) = argmin
n∑

i=1
ρτ (yi − ατ − uiTδ − xiTβ)+ λ‖β‖1, (6)

where ρτ is the loss function in quantile regression, λ is a tuning parameter, ‖ · ‖1 denotes
L1-norm, andλ‖β‖1 is the penalty function for regression shrinkage and variable selection.
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There are other choices of penalty functions such as adaptive LASSO [20], SCAD [21], and
MCP [22].

Instead of considering fixed quantile level, to improve efficiency we can model multiple
quantile levels simultaneously, say, through composite quantile regression [23]. Under the
condition that the effects of covariates are piecewise constant or continuous across different
quantile levels, the composite quantile estimate is more efficient than the one from a single
level; see [4,24–26]. In our setting we have

(α̂τ , δ̂, β̂) = argmin
n∑

i=1

K∑
k=1

ρτk(yi − ατk − uiTδ − xiTβ)+ λ‖β‖1, (7)

where ατ = (ατ1 . . . . ,ατK )T is a vector of intercepts. Typically, we can choose K=9 and
use equally spaced quantiles [23,24]. Note that quantile estimate (6) at a single level is just
a special case of composite quantile estimate (7) with K=1. In the following, we will focus
on the composite quantile regression case of (7).

2.3. Tuning parameters selection

There are two tuning parameters, the penalty parameter λ and the decomposition level
parameter J. The former controls the fitness of the model. When λ → 0, the LASSO
method becomes an ordinary quantile regression. When λ → ∞, the LASSO penalty
would set all the coefficients to zero. The later controls the optimal wavelet transforma-
tion. When J is small, the wavelet basis functions can only provide coarse approximation
of functions and therefore lose detailed local features. When J is large, the approximation
may pick up some redundancy noises while increases computational burdens. Therefore,
it is important to choose appropriate unknown tuning parameters.

In general, three approaches can be used in tuning parameters selection: Akaike infor-
mation criterion (AIC), Bayesian information criterion (BIC), and cross validation (CV)
[3,17,20,21]. In this article, cross validation method is adopted. In particular, to speed up
the computation which taking advantage of the cross-validation method, we prefer to use
κ-fold cross validation. Commonly, κ = 5 or κ = 10 [17]. In this article, five-fold cross
validation is used for tuning parameter selection. In the real data example, after tuning
parameters selection, 10-fold cross validation is used to estimate the prediction errors.

3. Theoretical properties

In this section, we investigate the asymptotical behaviour of the wavelet-based LASSO esti-
mators when both n → ∞ andm → ∞, meaning that the sample size n increases and the
curves zi(t)’s are also becoming more densely observed, respectively. Letm be the number
of discrete points at which the functional predictors zi(t) are observed with the sample n.
In order to derive the convergence rate of η̂(t) to η(t) we need the following assumptions.
Note that these assumptions are not necessary the weakest ones.

A1. The errors ε1, . . . , εn are independent and identically distributed with distribution
function F, its density function f (·) is bounded away from zero and infinity, and it
has a continuous and uniformly bounded derivative at their τ -th quantiles.
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A2. There exists constantM such that ‖zi(t)‖2 < M for all i.
A3. There are two constants c1 and c2 such that (1/n)

∑n
i=1 CiCT

i satisfies the eigenvalue
condition

0 < c1 < λmin

{
1
n

n∑
i=1

CiCi
T

}
≤ λmax

{
1
n

n∑
i=1

CiCi
T

}
< c2 < ∞

where Ci = [ui, xi]T.
A4. η(t) is a q times differentiable function in the Sobolev sense and the wavelet basis has

p vanishing moments, where p>q.
A5. λ = O(n−1/2), and n = Op(m4q)

A6. m/n → 0

The following theorem gives the convergence rate of the estimated functional coefficient
η̂(t), which depends on both sample size n and the number of discrete pointsm.

Theorem 3.1: Let η̂(t) be the estimator resulting from (7). If the assumptions A1–A6 hold,
then

‖η̂(t)− η(t)‖22 = Op

(m
n

)
+ op

(
1

m2q

)
,

where the L2 norm ‖ · ‖2 is in function integration sense.

A detailed proof of this Theorem 3.1 is provided in the Appendix. The approximation
error rate of η̂(t) towards η(t) are controlled by two terms. The first term is of the same
order of m/n which is a typical result of estimating, while the second term is of the lower
order of 1/m2qwhich ismainly due to approximation bywavelets. In particular, the approx-
imation error rate is dominated by the second term if m2q+1 is of the lower order of n.
Otherwise, it is dominated by the first term. Under further condition, we can have the
following theorem for the prediction error bound:

Theorem 3.2: Suppose z(t) are square integrable functions on [0, 1] and F−1(τ ) = 0. If the
assumptions A1–A6 hold, then

|ŷ − y|2 = Op

(m
n

)
+ op

(
1

m2q

)
,

where ŷ = α̂τ + uTi δ̂ + ∫ 1
0 z(t)η̂(t) dt.

The proof follows that from Theorem 3.1 and the Cauchy–Schwarz inequality, the
details of which are provided in the Appendix. Similarly as in Theorem 3.1, the prediction
error rate depends on the same two terms from estimating and approximation by wavelets
respectively, while the estimation errors caused by α̂τ and δ̂ are absorbed by the first
term.
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4. ADMM algorithm

The objective function in (6) is a sum of quantile loss function and penalty function. Both
loss and penalty functions are convex, therefore, ourminimization is a convex optimization
problem. Convex optimization problems can be solved by some general techniques like
interior point method [27] and the simplex method [6]. However, for large scale data,
bothmethods usually lead to intense computation.We adopt a novel algorithm, alternating
direction method of multipliers (ADMM) [28]. ADMM is a powerful algorithm for con-
vex optimization problems especially that can be decomposed into sub-convex problems
[29]. Although the ADMM originated in 1950s, it was mainly developed in 1970s [28,30].
Its convergence has been studied in many situations; see [29,31] for some examples. It has
been popularized in recent years because of its efficiency on large scale problems and ability
of solving multiple non-smooth terms in the objective function [29,31]. In this section, we
reformulate our optimization problems of (6) and derive their ADMM algorithms based
on the observation that they can be split into two sub-convex optimization problems and
one of the sub-problems has a non-smooth function.

To apply the ADMM algorithm, we rewrite the objective function (6) in matrix from

(α̂τ , δ̂, β̂ , ) = argmin ρτ (y − ατ − Uδ − Xβ)+ λ‖β‖1, (8)

where ρτ (y) = ∑n
i=1 ρτ (yi), y = (y1, . . . , yn)T, ατ = (ατ , . . . , ατ )T is an n dimensional

vector, and ‖· ‖1 stands for L1 norm. For simplicity, we define X∗ = (1n,U,X), β∗ =
(ατ , δT, βT)T. The objective function in model (8) becomes

argmin ρτ (β∗)+ λ‖β‖1
subject to − r − X∗β∗ = −y,

where ρτ (r) and λ‖β‖1 are two convex functions. The l-th iteration of ADMM is

rl+1 = argmin ρτ (r)+ �

2
‖y − r − Xβ l + ul‖22,

β l+1 = argmin λ‖β‖1 + �

2
‖y − rl − Xβ l + 1 + ul‖22,

ul+1 = ul + �(y − rl+1 − X∗β∗ l+1),

where � is a tuning parameter and was chosen to be 1.2 in this article [29]. The first step
can be simplified by the soft thresholding operator. That is,

rl+1 = S 1
�

(
y − Xβ l + ul − 2τ − 1

�

)
, (9)

where Sλ(x) = (x − λ)+ − (−x − λ)+ is a thresholding function. The second step is a
standard L1 penalized least square problem, which can be easily solved following LASSO
algorithm or approximately solved by linearization at β = β l ending up with a closed form
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solution by soft thresholding [32]. The primal and dual residuals are

sl+1 = �X(β l+1 − β l), tl+1 = rl+1 + Xβ l+1 − y,

respectively. The termination criterion can be set as

‖sl‖2 ≤ εpri and ‖tl‖2 ≤ εdual

where

εpri = √
nεabs + εrelmax{‖rl‖2, ‖X∗β∗l‖2, ‖y‖2},

εdual = √
nεabs + εrel‖ul‖2.

In our work, we choose εabs and εrel as 10−4 and 10−2 respectively.

5. Numerical studies

In this section, we conduct simulations to investigate the finite sample performance of
the wavelet-based LASSO in functional linear quantile regression and composite quantile
regression. For brevity in figures and tables, we use capital abbreviation QR standing for
quantile regression, CQR standing for composite quantile regression, QR LASSO standing
for quantile regression with a LASSO penalty, and CQR LASSO standing for composite
quantile regression with a LASSO penalty.

5.1. Model set up

Considering the linear functional model (1),

yi = α + uiTδ +
∫

zi(t)η(t) dt + εi.

We employ similar settings as those in [3]. In particular, ui of dimension 2. That is,
u = (u1, u2)T, where ui ∼ Uniform(0, 1), and u2 ∼ Bernolli(0.5). Each functional pre-
dictor z(t) comes from a stochastic Gaussian process with a mean of zero and the
covariance function is cov(z(t1), z(t2)) = t1(1 − t2), where t1 < t2. Two types of the coef-
ficient functions are investigated, smooth function and bumpy function. The smooth
function is ω(t) = 0.75Φ (t, 20, 60)− 0.05Φ (t, 50, 20), where Φ (t, θ , ϑ) = (�(θ +
ϑ)(tθ−1)((1 − t)ϑ−1))/(�(θ)�(ϑ)). Bumps, one of Donoho and Johnstone test functions,
is used as bumpy function.

Signal-to-noise ratio (SNR) is an important criterion to measure, it compares the level
of a desired signal to the level of background noise. In this article, we choose, SNR = μ/σ ,
where μ is the mean of the signal, and σ is the standard deviation of the noise. This
definition is used because μ is known and σ can be controlled. When SNR is signal, the
noise level is small and the signal on the signal is less than influenced the signal can be eas-
ily detected. SNR is big, on the other hand, when the signal is difficult to be discriminated
from the noise. In our research, we control SNR to be with in (1, 5).

The error term is decided in four types of distributions for each setting:
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I. Standard normal distribution: N(0, 1);
II. Mixed-mean normal distribution: 0.8N(0, 1.2)+ 0.2N(10, 1.2);
III. Mixed-variance normal distribution: 0.8N(0, 0.5)+ 0.2N(0, 5);
IV. Standard Cauchy distribution: C(0, 1).

In the first three normal distribution settings, SNR=2. We further investigate the per-
formance of the proposed method with other SNR values. We adjust the coefficients
through multiplying them by 0.5 and 1.5 to make SNR=1 and SNR=3 respectively. In
the last setting, the variance is infinite and SNR is technically zero. we set its scale param-
eter to be 1 and the coefficients the same as other errors to represent the different levels of
SNR. To simplify notations, we use SNR situation 1, SNR situation 2 and SNR situation 3
standing for three levels of SNR. Overall, there are 24 settings considering all the factors,
and we repeat each setting 100 times. Furthermore, we set the sample size as 200 and the
samples are captured at 128 (s = 128) equally spaced time points in the range of (0, 1). In
composite quantile regression, K=9, i.e. ατ = (0.1, 0.2, . . . , 0.9). Tuning parameter λ is
selected from 20 grid points in an arithmetic sequence from e−2.5 to e2.5 by five-fold cross
validation.

Various package in the software R was used to facilitate the computation.Wavelet trans-
form of the functional data and the inverse procedure can be achieved through the package
‘rwt’ [33] andwavelet basis fromDaubechies’ family is chosenwith the filter number 4. The
bumpy function can be performed through the ‘wavethresh’ package [34]. Quantile regres-
sion and composite quantile regression without a LASSO penalty can be analysed by the
existing functions in the ‘quantreg’ package [35].

5.2. Simulation study results

We compare our methods with QR and CQRwithout any penalty. We use the mean square
error (MSE) and themean integrated squared error (ISE) fromboth prediction and estima-
tion. respectively. In this article, we focus on functional coefficients only. We define MSE

Table 1. MSE with SNR situation 2.

Bumpy function Smooth function

Dist Method Mean Var Med MAD Mean Var Med MAD

I QR 1.07 0.01 1.06 0.09 1.01 0.01 1.01 0.09
QR LASSO 0.84 0.02 0.83 0.13 0.28 0.01 0.26 0.06
CQR 0.88 0.01 0.87 0.08 0.84 0.01 0.84 0.07
CQR LASSO 0.65 0.01 0.64 0.09 0.22 0.01 0.22 0.06

II QR 0.87 0.01 0.87 0.08 0.94 0.01 0.93 0.07
QR LASSO 0.69 0.01 0.67 0.11 0.24 0.01 0.23 0.05
CQR 0.72 0.01 0.72 0.071 0.77 0.01 0.76 0.07
CQR LASSO 0.52 0.01 0.52 0.07 0.21 0.01 0.19 0.05

III QR 1.04 0.01 1.03 0.09 1.21 0.02 1.20 0.12
QR LASSO 0.79 0.01 0.79 0.12 0.32 0.01 0.31 0.07
CQR 0.87 0.01 0.86 0.08 1.01 0.01 1.01 0.09
CQR LASSO 0.62 0.01 0.63 0.08 0.27 0.01 0.26 0.06

IV QR 4.84 1.03 4.68 0.96 8.25 8.53 7.78 2.46
QR LASSO 1.88 0.18 1.85 0.37 0.65 0.06 0.60 0.27
CQR 4.25 0.81 4.13 0.89 7.56 5.97 7.38 2.32
CQR LASSO 1.79 0.18 1.76 0.37 0.59 0.12 0.47 0.21
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Figure 1. Boxplots of MSE for four distributions I–IV; bumpy (left) and smooth (right) functions.



JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 1121

Table 2. ISE with SNR situation 2.

Bumpy Function Smooth Function

Dist Method Mean Var Med MAD Mean Var Med MAD

I QR 6.05 1.36 5.91 0.98 5.85 1.50 5.83 1.30
QR LASSO 2.55 0.53 2.39 0.64 0.16 0.02 0.11 0.04
CQR 4.98 1.06 4.93 1.06 4.44 0.89 4.28 1.01
CQR LASSO 2.02 0.27 1.95 0.40 0.13 0.04 0.07 0.03

II QR 4.81 0.73 4.71 0.88 5.39 1.35 5.44 1.28
QR LASSO 2.20 0.50 2.06 0.45 0.11 0.01 0.09 0.03
CQR 4.01 0.59 4.10 0.59 4.44 0.89 4.28 1.01
CQR LASSO 1.64 0.24 1.50 0.36 0.13 0.07 0.08 0.03

III QR 6.13 1.73 5.83 1.23 6.85 1.92 6.75 0.98
QR LASSO 2.42 0.50 2.33 0.57 0.14 0.01 0.11 0.04
CQR 5.06 0.98 4.96 1.10 5.74 1.60 5.51 0.80
CQR LASSO 1.95 0.26 1.90 0.46 0.12 0.01 0.10 0.03

IV QR 28.19 65.60 27.42 7.37 46.09 358.65 42.81 18.02
QR LASSO 5.05 2.01 4.96 1.32 0.30 0.09 0.19 0.07
CQR 24.98 58.76 24.60 7.23 42.56 267.42 41.29 15.31
CQR LASSO 4.93 3.07 4.74 1.55 0.48 0.55 0.15 0.09

and ISE for the functional coefficients as

MSE = 1
n

∫ 1

0
(β̂(t)− β(t))TXT(t)X(t)(β̂(t)− β(t)) dt,

ISE = 1
p

∫ 1

0
(β̂(t)− β(t))T(β̂(t)− β(t)) dt.

To compare performance of the four methods, namely QR (τ = 0.5), CQR, QR-LASSO
(τ = 0.5), and CQR-LASSO, we list the mean, variance, median and mean absolute devi-
ation (MAD) of MSE and ISE for bumpy and smooth functions, as well as their boxplots.
To save the space, we only report results from SNR situation 2. For the other two SNR
situations, the results are both in favour more or less of our methods with LASSO penalty.

As shown in Table 1 and Figure 1, wavelet-based LASSO in functional linear quantile
regression provides better estimation and prediction than wavelet-based functional linear
quantile regression without a LASSO penalty. When errors follow normal distributions
(including standard normal distribution andmixed normal distribution), medians of MSE
with a LASSO penalty are about 0.2–0.4 less than those without a LASSO penalty in the
bumpy function, and 0.7 less in the smooth function. Comparably, when errors are Cauchy
distributed, the prediction performance has more obvious difference. To be specific, medi-
ans of MSE of LASSO methods are dropped by up to 90%. In addition, CQR has smaller
MSE no matter with or without a LASSO penalty.

Table 2 and Figure 2 indicate the estimation performance. We observe that a LASSO
penalty largely improves the estimation of the four methods in the bumpy function. The
means and medians of ISE in LASSO methods are about 40% and 70% less than unpenal-
izedmethodswith normal distributed errors.While in the smooth function, themeans and
medians of ISE in LASSO methods is much smaller, only about1% to 3% of those without
a LASSO penalty. Moreover, when errors follow Cauchy distribution, means and medians
of ISE without a LASSO penalty become very big, meaning that they almost lose their esti-
mation ability and the results are not reliable. However, in LASSO methods, the values of
ISE are still at the similar level of the values with normal errors, which confirms that OR
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Figure 2. Boxplots of ISE for four distributions I–IV; bumpy (left) and smooth (right) functions.



JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 1123

Figure 3. Estimate coefficient function in bumpy (first two rows) and smooth function (last two rows).



1124 Y. WANG ET AL.

Figure 4. Estimate coefficient function for seven functional covariates.
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and CQR with LASSO penalty performs more efficiently and stably with infinite-variance
errors. In addition, CQR still performs better in most estimations than QRwith or without
a LASSO penalty. Figure 3 display the estimated coefficient functions of the four meth-
ods and overlaid with the true coefficients in SNR situation 2. LASSO methods give much
closer estimates in both bumpy function and smooth function. In particular, for smooth
function with Cauchy distribution errors, QR and CQR estimates with wavelet transform
are very far from the true coefficients.

5.3. Real data example

As an illustration, we use our methods to analyse a data set on Attention deficit hyper-
activity disorder (ADHD) from NYU site of ADHS-200 Global Competition, which are
available at fcon-1000.projects.nitrc.org/ indi/adhd200. ADHD is themost common child-
hood psychiatric disorder and may be followed by a lifelong time. The disease symptom
includes inattention, excessive motor hyperactivity or restlessness, and poor impulse con-
trol [36]. FromNew York University Child Study Center, atlas are the filtered preprocessed
resting state data using the Anatomical Automatic Labelling (AAL) [37]. There are 172
time courses in the filtering and AAL has 116 Regions of Interest (ROIs) fractionated into
functional space using nearest-neighbour interpolation [4].

In this article, we investigate the association between severity of ADHD and several
selected regions while adjusting for some demographic and other covariates. The ADHD
index (Conners Parent Rating Scale-Revised, long version (CPRS-LV)) serves as a contin-
uous response, which refers to the behaviour score and reflects the severity of the ADHD
disease. Seven regions of the brain are separately considered as functional covariates: the
cerebellum, temporal, vermis, parietal, occipital, cingulum and frontal. Those regions have
been previously found to be related to ADHD. All of them include as least four ROIs and
we take average of the ROIs. The other scalar covariates, we consider, include gender, age,
handedness, diagnosis status, medication status, Verbal IQ, Performance IQ and Full4 IQ.
The raw data has 222 subjects. After data cleaning and quality control, we have 142 subjects
left with. The 172 time courses are linearly interpolated to 256 equally spaced points for
conveniently applying wavelet transformed.

We use wavelet-based LASSO in functional linear quantile regression on the ADHD
data NYU site and estimate the functional covariates separately. Figure 4 shows the esti-
mated functional coefficients with properly chosen tuning parameters. We conclude that
the estimates of wavelet-based LASSO in composite quantile regression are consistent with
that in quantile regression. In particular, the results are quite close in cerebellum, temporal,
vermis and frontal. For parietal, occipital, and cingulum, the estimated coefficients in com-
posite quantile regression have more small sharps. In addition, the estimated functional
coefficients of the cerebellum have a similar pattern with that of vermis but in different
magnitude. It means these two covariates may have similar effects in pattern on the disease
but in different magnitude.

6. Conclusion

This article proposes an efficient approach to estimate functional coefficients in quan-
tile regression. After applying the wavelet transform on functional data, we combine
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the LASSO method with quantile regression and composite quantile regression to select
wavelet bases and estimate functional coefficients. Quantile regression and composite
quantile regression have the advantage of resistant to the outliers and heavy tails. Mean-
while, LASSO methods effectively reduce the number of wavelet bases to enhance the
strongest effects. Furthermore, it is more thorough to consider both functional covariates
and scalar covariates in themodelwith onlywavelet-based functional variables constrained
in a LASSO penalty. In addition, the ADMM algorithm is derived to efficiently solve the
optimization problem of quantile regression with a LASSO penalty.

Simulation studies show that wavelet-based quantile QR and CQR with a LASSO
penalty are capable of providing estimates with less estimation errors as well as less predic-
tion errors, even with infinite-variance errors. In addition, composite quantile regression
performs better than quantile regression in functional data analysis in most situations, no
matter with a LASSO penalty or without. We applied the proposed methods to the ADHD
data at NYU site from ADHD-200 Global competition to study the association between
ADHD index and seven regions of the brain. We observe that estimated coefficients from
wavelet-based LASSO in quantile regression are similar to coefficients from wavelet-based
LASSO in composite quantile regression, especially for cerebellum, temporal, vermis and
frontal.

For the wavelet-based LASSO methods in functional linear quantile regression, there
are several factors thatmay influence the performance. First, different wavelet basesmay be
chosen according to the nature of the application. In this article, we chose the Daubechies’
family wavelet because of its good property in localization [3]. However, some other
wavelet bases may have better ability to sparsely represent. Second, we derive the ADMM
algorithm to solve the convex optimization problem, but the efficiency may be affected by
the dimension of the finite sample. When the number of variables is bigger than the num-
ber of subjects, the results may be influenced. Third, the way to choose tunning parameters
impacts the performance of the methods. In this article, five-fold cross validation is used
to select the parameters, but AIC, BIC, and other methods can also be used for parameter
selection. We tried AIC and BIC, the results are no better than cross-validation.

There are some directions that deserved further research. More complex structure can
be imposed on the scalar effect part in (1), say imposing the single index structure [38]
to allow more flexibility. For the LASSO penalty, we cannot make sure every coefficient
equally penalized in the penalty, so adaptive LASSO [20] having the oracle properties
may be a more appropriate way to shrink the coefficients. In our set up, there is only
one functional covariate included in each model. However, to improve efficiency, multi-
ple functional covariates need to be considered in one model. The group-LASSO method
[39] may be an appropriate way to solve such problems. Moreover, if some of the func-
tional covariates use commonwavelet bases in the wavelet transform, they can be grouped.
Sparse-group LASSO [40] can promote the desired sparsity pattern and regularize nicely
within each group. However, the asymptotic properties and algorithm would need more
investigation. This is our current research and we will discuss it in another manuscript.
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Appendices

Appendix 1. Proof of Theorem 3.1

Proof: The proof based on articles [3,19]. First, we introduce some notations, the collection
{φj0k, k = 1, . . . , 2j0 ;ψjk, j ≥ j0, k = 1, . . . , 2j} is then an orthonormal basis of L2[0, 1]. Without
loss of generality, thewavelet bases are ordered according to the scales from the coarsest level J0 to the
finest one. LetVm := Span{ϕ1, . . . , ϕm} be the space spanned by the firstm basis function, for exam-
ple, ifm = 2j0+t then the collection {φj0k, k = 1, . . . , 2j0 ; ψjk, j0 + t − 1 ≥ j ≥ j0, k = 1, . . . , 2j} is
the basis ofVm. Let β

j
m be anm × 1 parameter vector with elements βk = 〈η(t),ϕk〉. In addition, let

ηm be the functions reconstructed from the wavelet coefficients βm. Here ηm is a linear approxima-
tion to η by the first m wavelet coefficients, while η̂m denotes the functions reconstructed from the
wavelet coefficients β̂m from (7).

By the Parseval’s theorem, we have ‖η̂ − η‖2L2 = ‖β̂m − βm‖22 + ∑∞
t=m+1 βt

2. To derive the con-
vergence rate of η̂ to η, we bound the error in estimating ηm by η̂m and the error in approximating
η by ηm. By the Theorem 9.5 of [41], the linear approximation error goes to zero as

∞∑
t=m+1

βt
2 = o(m−2q) (A1)

To obtain the result, we will show that for any given ε > 0, there exists a constant C such that

Pr
{
inf‖u‖=CQn((α

0
τ1 , . . . ,α

0
τK , δ

0,β0)+ rnu) > Qn((α
0
τ1 , . . . ,α

0
τK , δ

0,β0))
} ≥ 1 − ε (A2)

http://CRAN.R-project.org/package=rwt
http://CRAN.R-project.org/package=wavethresh
http://CRAN.R-project.org/package=quantreg
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where rn = √
m/n. This implies that there exists a local minimizer in the ball {(α0τ1 , . . . ,α0τK , δ0,β0)+ rnu : ‖u‖ ≤ C} with probability at least 1 − ε. Hence, there exists a local minimizer such that

‖(α̂τ1 , . . . , α̂τK , δ̂, β̂)− (α0τ1 , . . . ,α
0
τK , δ

0,β0)‖ = Op(rn). From this, we can also get |α̂τs − ατs | =
Op(rn) for k = 1, 2 . . .K. For any vector v = [v1, . . . , vK , vδ , vβ ] with ‖v‖ = C, we have

Qn((α
0
τ1 , . . . ,α

0
τK , δ

0,β0)+ rnv)− Qn((α
0
τ1 , . . . ,α

0
τK , δ

0,β0))

= Ln((α0τ1 , . . . ,α
0
τK , δ

0,β0)+ rnv)− Ln(α0τ1 , . . . ,α
0
τK , δ

0,β0)

+Pn(β0 + rnvβ)− Pn(β0)

By using the Knight’s identity,

ρτ (u − v)− ρτ (u) = −vψτ (u)+
∫ v

0
(I(u ≤ t)− I(u ≤ 0)) dt

with ψτ (u) = τ − I(u < 0), we rewrite

I := Ln((α0τ1 , . . . ,α
0
τK , δ

0,β0)+ rnv)− Ln(α0τ1 , . . . ,α
0
τK , δ

0,β0)

= 1
n

K∑
k=1

n∑
i=1

[ρτk(eki − rn(uTi vδ + xTi vβ + vk))− ρτk(eki)]

= 1
n

K∑
k=1

n∑
i=1

{∫ rn(uTi vδ+xTi vβ+vk)

0
(I(eki ≤ t)

−I(eki ≤ 0)) dt − [rn(uTi vδ + xTi vβ + vk)ψτk(eki)]
}

:= I1 + I2,

where eki = yi − uTi δ
0 − xTi β

0 − α0τk , I1 = −(1/n)∑K
k=1

∑n
i=1[rn(u

T
i vδ + xTi vβ + vk)ψτk(eki)],

and I2 = (1/n)
∑K

k=1
∑n

i=1
∫ rn(uTi vδ+xTi vβ+vk)
0 (I(eki ≤ t)− I(eki ≤ 0)) dt.

Note that eki = yi − uTi δ
0 − xTi β

0 − α0τk = εi − F−1(τk)+ o(m−2q), hencewehaveE(ψτk(eki) =
o(m−2q). It is easy to check that|I1| ≤ rn/n(

∑s
k=1 ‖ ∑n

i=1 ψτk(eki)[1,Ci]‖) and let wi = [1,Ci];

E

∥∥∥∥∥
n∑

i=1
ψτk(eki)wi

∥∥∥∥∥
2

= E

∥∥∥∥∥∥
m+1∑
j=1

n∑
i=1

n∑
l=1

wijwljψτk(eki)ψτk(ekl)

∥∥∥∥∥∥
= Op(nm)+ op(n2m1−4q)

= Op(nm),

we have I1 ≤ Op((rn/n)
√
nm) = Op(r2n).
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Using the same expression of eki, we obtain

E(I2) = 1
n

K∑
k=1

n∑
i=1

∫ rn(uTi vδ+xTi vβ+vk)

0
(Pr(eki ≤ t)− Pr(eki ≤ 0)) dt

= 1
n

K∑
k=1

n∑
i=1

∫ rn(uTi vδ+xTi vβ+vk)

0
(F(F−1(τk)+ o(m−2q)+ t)

− F(F−1(τk)+ o(m−2q))) dt

= 1
n

K∑
k=1

n∑
i=1

∫ rn(uTi vδ+xTi vβ+vk)

0

(
f (F−1(τk)+ o(m−2q))t + f ′(ξ)

2
t2

)
dt,

where ξ lies between F−1(τk)+ o(m−2q) and F−1(τk)+ o(m−2q)+ rn(uTi vδ + xTi vβ + vk).
Since there existsM such that ‖Ci‖22 < M, we have

max
1≤i≤n

|rn(uiTvδ + xiTvβ + vk)| → 0

E(I2) = 1
2n

r2n
K∑

k=1

[f (F−1(τk)+ o(m−2q))(nv2k + (vδ , vβ)T
n∑

i=1
CiCi

T(vδ , vβ))

+ op(1)(nu2k + (vδ , vβ)T
n∑

i=1
CiCi

T(vδ , vβ)T)].

Next, we will consider II:= Pn(β0 + rnvβ)− Pn(β0). since rn → 0, for ‖v‖ ≤ C we have

|β0 + rnvβ | − |β0| ≤ |rnvβ |.
Therefore,

Pn(β0 + rnvβ)− Pn(β0) ≤ λrn|vβ |1
≤ λrn

√
m‖vβ‖2

= Op(r2n‖vβ‖2).
Since II is bounded by r2n‖vβ‖2, we can choose a C such that the II is dominated by the term I2 on
‖v‖ = C uniformly. Therefore, we obtain

Qn((α
0
τ1 , . . . ,α

0
τK , δ

0,β0)+ rnv)− Qn((α
0
τ1 , . . . ,α

0
τK , δ

0,β0)) > 0

holds uniformly on ‖u‖ = C. This is the complete proof. �

Appendix 2. Proof of Theorem 3.2

Proof: By the Cauchy–Schwarz inequality, we have∣∣∣∣∫ 1

0
z(t)η(t) dt −

∫ 1

0
z(t)η̂(t) dt

∣∣∣∣ ≤
∫ 1

0
|z(t)||η(t)− η̂(t)| dt

≤
[∫ 1

0
|z(t)|2 dt

∫ 1

0
|η(t)− η̂(t)|2 dt

]1/2
= Op

(√
m
n

)
+ op

(
1
mq

)
.

Since F−1(τ ) = 0, we obtain|ατ + uTδ − α̂t − uTδ̂| ≤ Op(
√
m/n)+ op(1/mq) by the above proof.

Therefore, we obtain the result. �
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