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Abstract 
In this paper, the estimation of the parameters in partial functional linear 
models with ARCH(p) errors is discussed. With employing the functional 
principle component, a hybrid estimating method is suggested. The asymp-
totic normality of the proposed estimators for both the linear parameter in the 
mean model and the parameter in the ARCH error model is obtained, and the 
convergence rate of the slope function estimate is established. Besides, some 
simulations and a real data analysis are conducted for illustration, and it is 
shown that the proposed method performs well with a finite sample. 
 

Keywords 
Asymptotic Normality, ARCH(p) Errors, Functional Principal Components, 
Convergence Rate, Least Absolute Deviation 

 

1. Introduction 

In order to combine the flexibility of linear regression models with the recent 
methodology for the functional linear regression models, partial functional 
linear models, which was introduced by [1], is considered as follows:  

( ) ( )d ,Y t X t tγ ε′= + +∫z


β                  (1.1) 

where Y is a real-valued response random variable, z is a d-dimensional vector 
of random variables with zero means and finite second moments, and ( )X t  is 
an explanatory functional variable defined on  with zero mean and finite 
second moments (i.e. ( ) 2

E X t < ∞ , for all t∈ ), β is a d-dimensional vector 
of unknown parameters, ( )tγ  is a square integrable function on , ε is a 
random error and is independent of z and X. For simplicity, without loss of 
generality, it is assumed that [ ]0,1=  in the remainder of this paper. All the 
random variables are defined on the same probability space ( ), , PΩ  . 
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Model (1.1) has been studied by many authors from different points. From the 
view of estimation of model (1.1), for example, reference [2] studied the estimate 
of the model (1.1) using the nonparametric kernel regression methods and 
showed the proposed estimators are asymptotically normal as well as the 
estimator of the slope function ( )tγ  is consistent in supremum norm. 
Reference [3] considered the least square estimator of model (1.1) using the 
Karhunen-Loève (K-L) expansion to approximate the slope function, established 
asymptotic properties of the resulting estimation. Based on Tikhonov regularization, 
[4] introduced the functional ridge regression estimation procedure, and showed 
asymptotic normality of the estimated infinite dimensional regression coefficients 
as well as the convergence rate of the estimated slope function. Using the 
technique of polynomial splines, [5] considered the estimation of model (1.1) by 
minimizing the square of residuals, and furtherly considered the asymptotic 
property of the estimators. Recently, to get the robust estimator of coefficients of 
(1.1), the model has been also considered in the frame of qunatile regression ([6] 
[7]). Some authors also considered the model (1.1) from the view of hypothesis 
test, such as, [8] construct pivot by the square of residuals under the null and 
alternative hypothesis, to test whether the linearity term of (1.1) exists or not. 
Moreover, the generalized form of model (1.1), like semiparametric partially 
linear regression model for functional data and functional partial linear 
single-index model, has been respectively considered by [9] [10]. 

However, all the works have a common assumption that the responses are 
observed independently. As is well known, uncertainty such as volatility 
uncertainty is a common phenomenon in modern economic and financial theory. 
Therefore, the assumption of independence of the response observations is not 
valid in the real data analysis. Motivated by the fact mentioned above, we may 
want to reconsider the model (1.1) so that it can reflect the volatility of the data. 
Fortunately, conditional heteroscedasticity can reflect the size of volatility approp- 
riately. One of the most popular models which can show the heteroscedasticity in 
econometrics is the autoregressive conditional heteroscedasticity (ARCH) model 
which was introduced by [11] and have had an enormous impact on the 
modeling of financial data. More importantly, many authors have studied the 
ARCH models to make it more perfect in theory. For example, reference [12] 
considered the existence of the strictly stationary and ergodic solution and high 
moment of the ARCH model; [13] studied strong law of large numbers of the 
absolute value sequence from ARCH. 

If we have n observations ( ) ( ){ }1 1 1, , , , , ,n n nX Y X Yz z� , model (1.1) can be 
written as  

( ) ( )1

0
d .i i i iY t X t tγ ε′= + +∫zβ                  (1.2) 

The ARCH(p) model for { }iε  is defined by the following equations:  
1 2

2 2 2
0 1 1 2 2

,

,
i i i

i i i p i p

e h

h

ε

α α ε α ε α ε− − −

 =


= + + + + �
              (1.3) 
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where 0 0, 0, 1, ,i i pα α> ≥ = � . Besides, { }: 1ie i ≥  is an independent and 
identically distributed (i.i.d.) random sequence and independent of { }:t t iε <  
with 0iEe =  and 2 1iEe = . For sake of establishing the asymptotic properties of 
the joint model (1.2) and (1.3), in this paper, we assume that the distribution 
functions { }iF  of { }2

iε  are absolutely continuous with continuous densities 

if , which is uniformally bounded away from 0 and ∞ at the 1/2-th quantile 
points , 1, ,i i nξ = � . Moreover, similar to [3], assume that ( ) ( )1 1, , , ,n nX Xz z�  
in (1.2) are i.i.d.. 

The ordinary regression models with ARCH errors have been considered by 
many authors. For example, [14] considered a p-th order autoregression process 
with ARCH errors; [15] studied the estimation of the partly linear regression 
models with ARCH(p) errors. Under some regularity conditions, we study the 
estimation of the unknown parameters in the joint model of (1.2) and (1.3), and 
propose a hybrid estimation method with combining the functional principle 
component analysis in the mean model with the least absolute deviation for the 
error model. The asymptotic normality of the real-valued parameter estimators 
is established, and the convergence rate of the slope function estimator is 
obtained. 

The rest of the paper is organized as follows. Section 2 gives the estimation 
of parameters for the partial functional linear regression models as well as 
ARCH(p) errors. Asymptotic theory of the proposed estimators is given in 
Section 3. In Section 4, we carry out a simulation study to illustrate the finite 
sample performance, and a real data analysis is conducted in Section 5. Some 
preliminary lemmas and the proofs of the theorems are presented in 
Appendix. 

2. Estimation 

Firstly, we shall study how to produce the estimators ˆ ˆ,γβ  of ,γβ  in this 
section. Let ,⋅ ⋅  and ⋅  denote inner product and norm on [ ]2 0,1L  
respectively. Denote the covariance function of process X by CX which is 
continuous on ×  . Then we have the following expansion  

( ) ( ) ( )
1

,X j j j
j

C s t s tλ ρ ρ
∞

=

= ∑  

by Mercer’s theorem ([16]) with nonnegative eigenvalues 1 2, ,λ λ �  and 
continuous orthonormal eigenfunctions 1 2, ,ρ ρ �  of the covariance operator. 
For convenience, we assume 1 2 0λ λ> > >�  throughout this paper. Therefore, 
by K-L expansion, one has  

( ) ( )
1

i ij j
j

X t U tρ
∞

=

= ∑  

and  

( ) ( )
1

,j j
j

t tγ γ ρ
∞

=

= ∑  
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where ,ij i jU X ρ=  are uncorrelated random variables with E 0ijU  =   and 
2E ij jU λ  =  , and ,j jγ γ ρ= . Then (1.2) is equivalent to  

1
, 1, , .i i j ij i

j
Y U i nγ ε

∞

=

′= + + =∑z �β                (2.1) 

To estimate the parameters in (1.2), following [3]’s idea, we approximate the 
second term in (2.1) by finite sum  

1
, 1, , ,

m

i i j ij i
j

Y U i nγ ε
=

′ + + =∑z� �β                (2.2) 

where m →∞  as n →∞ . Furthermore, we employ the empirical version of 

XC   

( ) ( ) ( ) ( ) ( )
1 1

1ˆ ˆ ˆ ˆ,
n

X i i j j j
i j

C s t X s X t s t
n

λ ρ ρ
∞

= =

= =∑ ∑  

with ( )ˆ ˆ,j jλ ρ  being the pairs of eigenvalues and eigenfunctions of covariance 
operator related to ˆ

XC  and 1 2
ˆ ˆ 0λ λ≥ ≥ ≥� , and substitute ijU  in (2.2) with 

ˆ ˆ,ij i jU X ρ= . To get an elegant matrix form for model (2.2), denote  
( )1, , nY Y ′=Y � , ( )1, , n

′=Z z z� , ( ) 1, ,
1, ,

ˆ
m ij i n

j m
U =

=
=U �

�

, ( )1, , mγ γ ′=� �γ  and 
( )1, , nε ε ′= �ε . Then (2.2) can be rewritten as  

,m+ +Y Z U �� β γ ε  

and the least square estimator β̂  and �̂γ  are given by  

( ) ( ) ( )ˆˆ , arg min .m m
′ ′′ ′ = − − − −Y Z U Y Z U� � �β γ β γ β γ  

By simple calculation, we have  

( )( ) ( )1ˆ
m mI I Y

−
′ ′= − −Z V Z Z Vβ  

with ( ) 1
m m m m m

−′ ′=V U U U U  and  

( ) ( )1ˆ ˆ
m m m

−′ ′= −U U U Y Z�γ β  

provided that ( )( ) 1
mI

−
′ −Z V Z  exists (this is true with probability tending to 1, 

see Lemma 1 in [8]). The estimator γ̂  of γ can be given as  

( ) ( )
1

ˆ ˆ ˆ ,
m

j j
j

γ γ ρ
=

⋅ = ⋅∑  

where ˆ jγ  is the jth element of �̂γ . 

To get asymptotic properties of β̂ , let 1
1

ˆ n
i iiC n−

=
′= ∑z z z , 1

1
ˆ n

i iiC n Y−
=

= ∑zY z , 

( ) ( )1
1

ˆ n
X i iiC t n X t−

=
= ∑z z , ( ) ( )( )ˆ ˆ

X XC t C t ′=z z  and ( ) ( )1
1

ˆ n
YX i iiC t n Y X t−

=
= ∑ . 

Then β̂  is equal to  
1

1 1

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ, , , ,
ˆ ˆ ˆ ,ˆ ˆ

m mX j X j X j YX j
Y

j jj j

C C C C
C C

ρ ρ ρ ρ

λ λ

−

= =

   
   = − −
   
   

∑ ∑
z z z

z zβ     (2.3) 

with 1
1

ˆ ˆ ˆ, ,n
X j i i jiC n Xρ ρ−

=
= ∑z z  and 1

1
ˆ ˆ ˆ, ,n

YX j i i jiC n Y Xρ ρ−
=

= ∑ . Simi- 
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larly, ˆ jγ  can be represented as ˆ ˆ ˆ ˆˆ ˆ, , 1, ,j YX X j jC C j mγ ρ λ′= − =z �β . 

So far, we have already obtained the estimator β̂  and γ̂ , now we turn to 
consider the estimation of ( )0 1, , , pα α α ′= �α . Denote by  

1

ˆ ˆˆ ˆ , 1, ,
m

i i i j ij
j

Y U i nε γ
=

′= − − =∑z �β  

the residuals. For ARCH(p) models, in view of the higher peak and heavy tail 
phenomenon, unlike Sastry’s idea that regress 2

îε  on a column of ones and 
2

1îε −  by minimizing the sum of the square of residuals, after getting the residuals 
ˆ , 1, ,i i nε = �  to get the parameter’s estimate of ARCH (1) sequence ([14]), 

minimizing the sum of the absolute residuals is used in this paper to get an 
estimator of ( )0 1, , , pα α α ′= �α . That is to say  

1
2 2 2

0 1 1
1

ˆ ˆ ˆ ˆarg min ,p

n

i i p i pR
i p

α
ε α α ε α ε+ − −∈

= +

= − − − −∑ �α          (2.4) 

where ( )0 1ˆ ˆ ˆ ˆ, , , pα α α ′= �α . 

3. Asymptotic Properties 

We first state the assumptions under which the asymptotic properties are proved, 
then present the theorems. Let ( )Dρ  and mD⊗  denote the spectral radius and 
Kronecker product of matrix D respectively, and { }:t i i tσ ε= ≤  in the 
following. 

It is easy to see that [ ]1E | 0t tε − = , 2
1E |t t thε −  =  , namely, the ARCH(p) 

process forms a martingale difference sequence with 2 0

1

E
1t

p

α
ε

α α
  =  − − −�

. 

In order to attain the stationary solution and guarantee the existence of high 
moment of { }tε , we suppose that  

( )0
1

0 , 1, 1
p

j r
j

α α ρ
=

< < ∞ < Σ <∑                  (3.1) 

for some integer 1r ≥ , where ( )E r
r tD⊗Σ = ,  

2 2 2
1 1

1 0 0
.

0 1 0

t p t p t

t

e e e

D

α α α− 
 
 =  
  
 

�
�

� � � �
�

 

Then, as [12] and [14] proved, there exists a strictly stationary solution for the 
p-th order ARCH process given by  

1
2 2 2

0 1 1
1 0

j

t t t j t i
j i

e e Dε α
−∞

− −
= =

  ′= +  
  

∑ ∏δ δ                 (3.2) 

with ( )1 1,0, ,0 ′= �δ . 
In the following, let C denote positive constant which may change from line to 

line. It is assumed that the random function X satisfies  
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4E X < ∞                          (3.3) 

and for each j  
4 2E j jU Cλ  ≤                          (3.4) 

for some constant C. For the eigenvalues of XC , assume that there exist C and 
1a >  such that  

1 1
1, , 1a a a

j j jC j Cj Cj jλ λ λ− − − − −
−≤ ≤ − ≥ ≥             (3.5) 

to prevent the spacings among eigenvalues being too small. In order to 
guarantee that the regression weight function γ is smoother than the sample 
path X, for the Fourier coefficients jγ , we suppose that  

b
j Cjγ −≤                          (3.6) 

for some constant C and 2 1b a> + . On the tuning parameter, we assume that  
( )1 2~ ,a bm n +                         (3.7) 

where ~n na b  means there exist constants 0 L M< < < ∞  s.t. n

n

aL M
b

≤ ≤  

for all n. Besides, we also assume that  
4

dRE < ∞z                         (3.8) 

for the random vector z  with ( )
1
2dR

′=z z z  and ( ) ( )( )Cov ,
kz X kC z X⋅ = ⋅  

satisfies  
( ),

k

a b
z X jC Cjρ − +≤                      (3.9) 

for each 1,2, ,k d= �  and 1j ≥ . 
Let ,ik ik k iz Xη χ= − , where ( )1 ,

kk z X j j jj Cχ ρ λ ρ∞

=
= ∑ . Then,  

1 , ,k nkη η�  are i.i.d. random variables. We suppose that  

[ ] 2
1 1 1 1E | , , 0, E | , , ,k n k n kkX X X X Bη η = = � �  

where kkB  is the kth diagonal element of  

[ ]1 1
1

, ,
E ,X j X j

j j

C C
C

ρ ρ

λ

∞

=

′= = −∑ z z
zB ηη            (3.10) 

which is assumed positive definite, and ( )1, ,i i idη η ′= �η . 
With the assumptions that mentioned above, we have the following results.  
Theorem 1. If the assumptions (3.1) with 2r = , (3.3)-(3.10) hold, we have  

( )1 2 10

1

ˆ 0,
1

d

p

n N α
α α

−
 

− →   − − − 
B

�
β β  

as n →∞ , where “ d→ ” denotes convergence in distribution.  
Theorem 2. Under the assumptions (3.1) with 1r = , (3.3)-(3.10), one has  

( ) ( )( )2 2 1 2ˆ .b a b
pO nγ γ − − +− =  

Theorem 3. Under the conditions of { }iε  and the assumptions (3.1) with 
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2r = , (3.3)-(3.10), we have  

( )1 2 1 1
1 1

1ˆ 0,
4

dn N D PD− − − →  
 

α α  

as n →∞ , where  
2 2 2

1 1
2 4 2 2 2 2

1 1

2 2 2 2 2 4
1 1 1 1 1

1

E ,

p p

p p p p p

p p

P

ε ε ε
ε ε ε ε ε ε

ε ε ε ε ε ε

−

−

−

 
 
 =  
  
 

�
�

� � � �
�

 

( )1
1

1
lim ,

n

n i i i i
i p

D n f v vξ−
→∞

= +

′= ∑  

with ( )2 2 2
1 21, , , ,i p i p i iv ε ε ε+ − + −

′= � .  
Remark 1. Compared with [3], we can find that the estimator of the 

regression coefficient vector also has the convergence rate n  and is asympto- 
tically normal under the ARCH(p) errors.  

Remark 2. To implement the proposed method, we need to know how to 
choose the cut-off point m. Theoretically, if m is too large, the number of 
parameters in model (2.2) is also too large and the estimate of the slope function 
γ may goes terrible by the properties of Functional Principal Component 
Analysis (FPCA); if m is taken as a small value, the approximation of model (2.2) 
to model (2.1) may not be enough. This is the role that condition (3.7) plays. 
There are well-established methods for choosing such tuning parameter m, such 
as Generalized Cross-Validation (GCV), AIC, BIC and FPCA. As we all know, 
the first three criteria are data-driven and the FPCA is based on the ratio of 
variance explained by the first m eigenvalues to the total variation of X. In 
section 4, GCV and FPCA are respectively considered.  

Remark 3. In order to make inference for α , the estimation of the 
asymptotic variance, mainly involving the estimation of P and ( )i if ξ , is needed 
to be given. Based on (A.8) in the Appendix, it is reasonable to use  

1
1

ˆ ˆn
i ii pn v v−

= +
′∑  as the estimate of P with ( )2 2 2

1 2ˆ ˆ ˆˆ 1, , , ,i p i p i iv ε ε ε+ − + −
′= � . For ( )i if ξ , 

the sparsity estimation methods or the kernel density estimation ideas, suggested 
by [17] and [18] respectively, can be used for this paper.  

4. Simulation Studies 

In this section, simulations are carried out to show the finite sample performance 
of the proposed method. The data is generated from the model (1.1) in the case 
where 1iz  and 2iz  are standard normal,  

( ) ( ) [ ]
200

1
, 0,1 ,j j

j
X t U t tρ

=

= ∈∑  

where the Ujs are distributed as independent normal with mean 0 and variance 
( )( ) 2

0.5 πj jλ
−

= −  respectively, ( ) ( )( )2 sin 0.5 πj t j tρ = −  and  

( ) ( )1
1 1 2 2 0

di i i i iY z z t X t tβ β γ ε= + + +∫  
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with ( ) ( ) ( ) ( )2, 1 , 2 sin π 2 3 2 sin 3π 2t t tγ′= − = +β . For the random error,  

we take the following form: 1 2
i i ie hε = , 2 2

0 1 1 2 2i i ih α α ε α ε− −= + + , ( ). . .~ 5i i d
ie t ,  

where 0α  takes value 0.1, 1α  takes value from 0.1, 0.3 and 2α  takes value 
from 0.3, 0.1 correspondingly. Note that ( )5t  has finite 4th order moment, and  

the condition (3.1) is satisfied by ( )0.1,0.1,0.3 ′=α  and ( )0.1,0.3,0.1 ′=α   

with 1r = , where it may be shown that both β̂  and α̂  given by (2.3) and  
(2.4) are consistent. For ( )0.1,0.3,0.3 ′=α  with 1r = , ( ) 1rρ Σ = . That is, it is 
on the boundary of the condition region. 

We also consider the situation that 1α  and 2α  take values 0 to compare 
with the independent structure. For each α , we simulate 1000 random samples, 
each with sample size 100,300,500n =  respectively. For the determination of  

m by FPCA, { }1 1
ˆ ˆmin : 0.85k n
i ii im k λ λ

= =
= ≥∑ ∑  is used. The accuracy of the  

slope function estimate is checked by the mean integrated square error (MISE) 
which is defined as  

( ) ( )( )
1000 2

1 1

1 1 ˆMISE ,
1000

N

i s s
i s

t t
N

γ γ
= =

 = −  
∑ ∑  

where ( )îγ ⋅  is the estimate of the slope function ( )γ ⋅  obtained from the i-th 
replication, and , 1, ,st s N= �  are the equally spaced grid points at which the 
function ( )î tγ  is evaluated. In our implementation, 100N =  is used. In this 
section, the results of the estimators of α  using the Least Square (LS) method 
is also carried out to compare with the Least Absolute Deviation (LAD) method 
which is proposed by this paper. The results are summarized into Tables 1-3 
and the shape of the true function γ and the estimated function γ̂ , based on the 
average of 1000 replications with ( )0.1,0.1,0.3 ′=α  are depicted in Figure 1.  

 
Table 1. MSE and MISE under LAD (GCV). 

n ( )1 2α α  1β  2β  γ  0α  1α  2α  

100 (0.0 0.0) 0.0021 0.0022 0.4414 0.0029 0.0021 0.0019 

 (0.1 0.3) 0.0056 0.0060 0.9230 0.0024 0.0093 0.0458 

 (0.3 0.1) 0.0053 0.0068 0.9593 0.0028 0.0466 0.0086 

 (0.3 0.3) 0.0163 0.0178 1.7093 0.0084 0.0477 0.0482 

300 (0.0 0.0) 0.0006 0.0006 0.1400 0.0026 0.0006 0.0004 

 (0.1 0.3) 0.0017 0.0019 0.3676 0.0021 0.0052 0.0364 

 (0.3 0.1) 0.0017 0.0017 0.3203 0.0021 0.0353 0.0060 

 (0.3 0.3) 0.0089 0.0089 1.0242 0.0076 0.0381 0.0402 

500 (0.0 0.0) 0.0003 0.0003 0.0865 0.0025 0.0002 0.0002 

 (0.1 0.3) 0.0009 0.0009 0.1942 0.0022 0.0041 0.0320 

 (0.3 0.1) 0.0010 0.0009 0.1924 0.0021 0.0310 0.0050 

 (0.3 0.3) 0.0039 0.0045 0.6985 0.0024 0.0352 0.0386 
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Table 2. MSE and MISE under LAD (FPCA). 

n ( )1 2α α  1β  2β  γ  0α  1α  2α  

100 (0.1 0.3) 0.0056 0.0059 0.6424 0.0028 0.0096 0.0464 

 (0.3 0.1) 0.0054 0.0066 0.6453 0.0031 0.0465 0.0086 

 (0.3 0.3) 0.0164 0.0176 0.8812 0.0094 0.0480 0.0491 

300 (0.1 0.3) 0.0017 0.0019 0.0910 0.0022 0.0053 0.0362 

 (0.3 0.1) 0.0017 0.0017 0.0911 0.0022 0.0351 0.0061 

 (0.3 0.3) 0.0059 0.0084 0.2079 0.0021 0.0382 0.0416 

500 (0.1 0.3) 0.0009 0.0009 0.0581 0.0022 0.0041 0.0318 

 (0.3 0.1) 0.0010 0.0009 0.0573 0.0021 0.0311 0.0050 

 (0.3 0.3) 0.0030 0.0030 0.1284 0.0020 0.0357 0.0399 

 
Table 3. MSE and MISE under LS (GCV). 

n ( )1 2α α  1β  2β  γ  0α  1α  2α  

100 (0.1 0.3) 0.0056 0.0060 0.9230 0.1559 0.0203 0.0411 

 (0.3 0.1) 0.0053 0.0068 0.9593 0.1286 0.0412 0.0252 

 (0.3 0.3) 0.0163 0.0178 1.7093 4.1482 0.0430 0.0541 

300 (0.1 0.3) 0.0017 0.0019 0.3676 0.1011 0.0122 0.0258 

 (0.3 0.1) 0.0017 0.0017 0.3203 0.0619 0.0271 0.0206 

 (0.3 0.3) 0.0089 0.0089 1.0242 25.1315 0.0318 0.0690 

500 (0.1 0.3) 0.0009 0.0009 0.1942 0.1215 0.0123 0.0230 

 (0.3 0.1) 0.0010 0.0009 0.1924 0.1684 0.0259 0.0251 

 (0.3 0.3) 0.0039 0.0045 0.6985 18.6453 0.0305 0.0525 

 
Table 4. MSE and MISE with ( )0,1N  produced errors under GCV ( ( )0.1, 0.3, 0.3 ′=α ). 

n  1β  2β  γ  0α  1α  2α  

100 LAD 0.0030 0.0028 0.6190 0.0027 0.0455 0.0473 

 LS 0.0030 0.0028 0.6190 0.0049 0.0379 0.0472 

300 LAD 0.0009 0.0009 0.1982 0.0028 0.0373 0.0387 

 LS 0.0009 0.0009 0.1982 0.0023 0.0201 0.0261 

500 LAD 0.0006 0.0005 0.1088 0.0029 0.0341 0.0345 

 LS 0.0006 0.0005 0.1088 0.0022 0.0171 0.0220 

 
We also would like to know that how will the LAD method behave when the 
error of the ARCH sequence is not heavy tailed, such as ( )~ 0,1e N . The 
simulation results are summarized into Table 4 with ( )0.1,0.3,0.3 ′=α . In this 
case, (3.1) is satisfied with both 1r =  and 2r = . 

We can derive the following conclusions from Tables 1-4.  
1) From Table 1 and Table 2, with the increasing of sample size n, it can be 
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seen MSEs, MISE decrease in all scenarios that we considered about error. This 
reflects the proposed estimators fit better to the real values as the sample size 
increases and thus is promising.  

2) For every fixed sample size n, it can be seen the larger value of coefficients 
α , the larger the corresponding MSE for the different coefficients form of errors. 
For example, when 100n = , α  take values ( )0.1,0.1,0.3  and ( )0.1,0.3,0.1  
respectively, the MSE of 1 0.3α =  is larger than the MSE of 1 0.1α =  and so is 

2α . Moreover, the MSE of α̂  and MISE of γ̂  become large when the 
coefficients 1 2,α α  take relative large values simultaneously, such as  
( ) ( )1 2, 0.3,0.3α α =  in Table 1. This is due to the stronger volatility for larger 

, 1, 2j jα = .  
3) From Table 1, for every fixed sample size n, when 1 2,α α  take values 0, 

which is the case considered by [3], the MSE and MISE of β̂  are smaller than 
those with ARCH errors. This shows that the dependence of errors makes the 
estimators more varying. However, with the increasing of sample size, the later 
ones decrease and could reach the former quantities.  

4) The MSE of the coefficients α̂ , in Table 3, using the LS method for ( )5t  
produced errors get larger values, compared to the results of estimator given by 
(2.3). Specifically, unlike the results in Table 1 and Table 2, the results of 0α  
for the boundary case ( ) ( )1 2, 0.3,0.3α α =  are unstable, illustrating the reasona- 
bleness of the proposed method.  

5) Table 4 shows that the LAD method could perform as well as the LS 
method even for non-heavy tailed distribution of the error.  

6) As Table 1 and Table 2 show, the difference of the estimators of β  
between the two selection methods of m is very small.  

Based on simulation results from Table 1 and Table 2, it seems that the 
estimator of γ  corresponding to FPCA is better in view of MISE. As we know, 
when using FPCA to choose m, a threshold value for the ratio is needed. We 
reset the threshold value as 0.80 rather than 0.85 for the case 100n =  and 

( )0.1,0.1,0.3 ′=α , the MISE will become 6.6373 which is bigger than 0.9230 
given in Table 1. As far as we know, there is no theoretical research on how the 
threshold value should be set to get a compromise between goodness of fit and 
the precision of the estimated slope function. 

From Figure 1, it can be seen that the estimated function can fit the true 
function approximately no matter which method is used to choose the tuning 
parameter m, which demonstrate that the proposed method works well. 

From the above observation, we see that the estimator (2.4) performs well, 
even under the boundary condition. It may be theoretically interesting to know 
the performance of the estimator in this case, but it is beyond our focus here. 

5. Real Data Analysis 

In this section, we apply the proposed method to deal with a real dataset. The 
data consist of monthly electricity consumption, denote by C, consumed by  
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Figure 1. The true function γ (solid line) and the estimated function γ̂  (dashed line) 
using GCV (left) and FPCA (right) with 100n = . 

 
commercial sectors from January 1972 to January 2005 (397 months) and their 
annual average retail price P (33 years). A main goal of this study is to consider 
the effect of dependence structure of the error on the asymptotic variance of β̂ , 
when using the price and consumption to predict the consumption 6 months 
later. 

According to the stationary test of the electricity consumption data, the 
heteroscedasticity and linear trend can be found and then may be eliminated by 
differencing the ln data. Corresponding to the general notation introduced in 
model (1.1), let  

1ln ln , 1,2, ,397,j j jD C C j−= − = �  

( ) [ ]{ }12 1 , 1,12 , 1,2, ,32.i i tX D t i− += ∈ = �  

The response variable is  

12 6 , 1, 2, ,32,i iY D i+= = �  

and the additional real variable is defined by  

, 1, 2, ,32.i iz P i= = �  

Regress Y on Z and X with m chosen by the FPCA with threshold 0.85, then 
the residuals are obtained. Although it seems reasonable to treat the residuals as 
white noise sequence, the characteristics of volatility clustering may exists 
according to Figure 2. For this sequence, a further analysis is conducted 
numerically, and the significant level takes value 0.05 in the following test. The 
stationary is tested firstly using the function “adf.test()” in R packages with the p 
value 0.019. Whether the sequence is uncorrelated or not is considered using the 
Box-Ljung statistics, accepting the null hypothesis with the p value 0.08. 
However, for this sequence, the skewness value 0.03 and kurtosis value 2.48 
shows it has high peak and heavy tailed features. Box-Ljung test is adopted again 
for the square of the residuals sequence, demonstrating the existence of the 
ARCH structure with p value 0.03. As Figure 3 show, it is appropriate to use 
ARCH(3) to fit the square residuals sequence. By calculation, under the 
existence of volatility clustering for the errors, the asymptotic standard variation  
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Figure 2. The graph of error sequence. 
 

 

Figure 3. The pacf of the errors square. 
 

of β̂  is 0.01, which is reduced by 94% comparing with the value 0.18, which is 
given under ignoring concrete form of the error, showing it is promising to 
consider the ARCH structure. 

6. Discussion 

In this paper, the estimation of partial functional linear models with ARCH(p) 
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errors using the LS method, as well as the parameters of ARCH(p) sequence 
using the LAD method are respectively considered. Considering that the 
dimensionality of the slope function is infinite, for this paper, the key point we 
have given consists in transforming the partial functional linear models with 
ARCH errors into the corresponding linear regression models by the K-L 
expansion and the idea of FPCA. The linear relationship between z and X is 
essentially assumed (see Remark 1 in [8]). In the future study, under the errors’ 
dependent structure, we will further consider the estimation of the model (1.1) 
using the kernel method noticing that the relationship between z and X may be 
relaxed. Since the heteroscedasticity in economics is a common phenomenon, 
the theory study of the model is practically useful and worthy to be explored. 
Furthermore, based on the fact the consistency of α̂  and β̂  can be 
respectively obtained from Theorem 3 and the proof of Theorem 1, the inference 
to the models could be made precisely within this paper by the asymptotic 
normality of β̂ . 
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Appendix. Proofs of the Theorems 

We will state the proofs of the theorems given in Section 3. Firstly, some lemmas 
will be given. 

Lemma A.1. ([12], Theorem 1) { }tε  is a strictly stationary solution of model 
(1.3) and 2

0Eε < ∞  if and only if 
1 1p

jj α
=

<∑ . Furthermore, this solution is 
unique and ergodic.  

Lemma A.2. ([12], Theorem 3) Let  

( ){ }1
E , is random variable

rrr
rL x x x x= = < ∞  and suppose (3.1) holds,  

( )4 1E r
te − < ∞ , where 1r ≥  is an integer, then 2 r

t Lε ∈ .  

Lemma A.3. Consider { }: 1i iε ≥  forms an ARCH(p) process. Besides, (3.1) 
holds, then  

1 2 2

1
E . .

n
r r

i i
i

n a sε ε−

=

 →  ∑  

for the integer r in condition (3.1); furthermore, if 2r ≥ , then  

1 2 2 2 2

1
E a.s..

n

i i j i i j
i

n ε ε ε ε−
− −

=

 →  ∑  

Proof. From Lemma A.1 and the representation (3.2), it follows that { }tε  
and { }2

tε  are strictly stationary ergodic sequences. Combining with Lemma A.2, 
the results follow immediately from the ergodic theorem ([19] [20]). 

Lemma A.4. If ε is independent of X and (3.1)-(3.2) hold, one has  
1

1 2

1
.

n

i i p
i

n X O nε
−−

=

 
=   

 
∑  

Proof. By simple calculation, the conclusion can be easily derived under the 
fact ( )2

0 1E 1i pε α α α  = − − −  � . 

Proof of Theorem 1. Let ( ) ( )1
ˆ ˆˆ ˆ ˆ, ,

k

m
k z X j j jjx C xρ λ ρ

=
Φ =∑  and  

( ) ( )1 , ,
kk z X j j jjx C xρ λ ρ∞

=
Φ =∑  with [ ]( )2 0,1x L∈ . Set  

maxi ijjA A
∞
= ∑  and 

1 1
d d

iji jA A
= =

= ∑ ∑  for ( ) d d
ijA A R ×= ∈ . Observe that  

( ) ( )1 2 1 1 2

1 =1

1 1 2

1 1

1 1 1

1 1

ˆ ˆ ˆ, ,1ˆ ˆ ,ˆ

ˆ ˆ ˆ, ,
ˆ ,ˆ

ˆ ˆ ˆ, ,, ,
ˆ

n m X j i j
i i i

i j j

n m X j i j
i i

i j j

n m X j i jX j i j
i

i j jj j

n

i
i j

C X
n n X

n

C X
n X

C XC X

C

ρ ρ
γ ε

λ

ρ ρ
γ

λ

ρ ρρ ρ
ε

λ λ

−

=

− −

= =

∞

= = =

∞

= =

    − = − +     
    = −    

 
 + −
 
 

+ −

∑ ∑

∑ ∑
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∑ ∑

z

z

zz
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β β

, ,X j i j
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with ( ){ }
, 1, ,

ˆ ˆˆ ˆ
mk z X

k m d
C C

=
= − ΦzB

�
. 

According to Lemma A.4, similar to [3], one has  
( ) ( )( )2 1 2ˆ ,b a b

pO n− − +

∞
− =B B  

( )1 2

1 1

ˆ ˆ ˆ, ,
, 1 ,ˆ

n m X j i j
i i p

i j j

C X
n X o

ρ ρ
γ

λ
−

= =

 
 − =
 
 

∑ ∑
z

z  

( )1 2

1 1 =1

ˆ ˆ ˆ, ,, ,
1 .ˆ

n m X j i jX j i j
i p

i j jj j

C XC X
n o

ρ ρρ ρ
ε

λ λ

∞
−

= =

 
 − =
 
 

∑ ∑ ∑
zz  

Now, we consider the term  

1 2 1 2
1 1 1

, ,
:X j i jn n

i i i ii j i
j

C X
n n

ρ ρ
ε ε

λ
∞− −

= = =

 
 − =
 
 

∑ ∑ ∑zz η . We will show  

1 2 0

1 1

0, .
1

n
d

i i
i p

n N α
ε

α α
−

=

 
→   − − − 

∑ B
�

η             (A.1) 

Let ( )1 1E |j j− − ⋅ = ⋅ P   and 1 2
i i in ε−=ξ η , then { }iξ  forms a martingale 

difference series due to the fact that iξ  is 1i− -measurable and ( )1 0i i− =P ξ . 
Let iu  denote the conditional variances of iξ , then, for 1, ,i n= � ,  

( ) ( ) ( ) ( )1 2 1 2 1
1 1 1E .i i i i i i i i i i i i in n n hε ε− − −
− − −′ ′ ′= = = =u P P P Bξ ξ ηη ηη  

Therefore,  

1 0

1

,
1

p
i i

i i p

n h α
α α

−= →
− − −∑ ∑u B B

�
 

according to the law of large numbers ([19]). Furthermore, for any 0δ > ,  

{ }( )
{ }( )
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−
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∑

∑

∑
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η η η

η η η

ηη η

ηη

 

For the first term, it converges to zero because j j′η η  is uniformly integrable. 
In view of the integrability of 2

iε , the second term also converges to zero in 
probability. Using the martingale difference central limit theorem (CLT) ([21], 
we get (A.1) holds. Therefore, the conclusion of Theorem 1 holds. 

Proof of Theorem 2. With Lemma A.4, the technics in the proof of Theorem 
3.2 of [3] can be extended to the present model. So we omit it here. 

Proof of Theorem 3. Firstly, we consider the following two equalities:  
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1
1 2 1 2 2

1 1

ˆ ,
n n

i i p
i p i p

n n o nε ε
−− −

= + = +

 
= +   

 
∑ ∑                 (A.2) 

1
1 2 2 1 2 2 2

1 1

ˆ ˆ .
n n

i i j i i j p
i p i p

n n o nε ε ε ε
−− −

− −
= + = +

 
= +   

 
∑ ∑

            
 (A.3) 

From Theorem 1 and Theorem 2, we learn that  

( ) ( ) ( )( )22 2 1 2

1

ˆˆ ,
m

b a b
j j p

j
O nγ γ − − +

=

− = − =∑ � �γ γ            (A.4) 

( )1 2ˆ .pO n−− =β β
                    

 (A.5) 

Under the conditions (3.5)-(3.7) and ( )2X L∈  , one has  

( ) ( )( )2 2 2 1 22 2

1 1
, , .b a bb

j i j i j p
j m j m

X C j X O nγ ρ ρ
∞ ∞

− − +−

= + = +

≤ =∑ ∑
    

 (A.6) 

In addition, according to (3.3) and 1 2 mλ λ λ> > >� , the relation  
2ˆlimsup E j j

n
n ρ ρ

→∞
− < ∞                    (A.7) 

holds, see ([22], ch4). For the residual 2
îε , we have  

( ) ( )

1

1 1

1

1 1

ˆ ˆˆ ˆ

ˆ ˆˆ

ˆ ˆ ˆ,

ˆ, ,

m

i i i j ij
j

m

i j ij i i j ij
j j

m

i i j j i j
j

m

j i j j j i j
j j m

Y U

U U

X

X X

ε γ

γ ε γ

ε γ γ ρ

γ ρ ρ γ ρ

=

∞

= =

=

∞

= = +

′= − −

′ ′= + + − −

′= − − − −

− − +

∑

∑ ∑

∑

∑ ∑

z

z z

z

β

β β

β β
 

by (2.1). Combining this equality with (A.4)-(A.7), (A.2) and (A.3) can be 
proved. 

Now we turn to consider the asymptotic form of α̂ . By Lemma A.3, we can 
conclude  

( ) 11 1ˆ ˆ . . as ,n P P P a s n
−− −′ → →∞                 (A.8) 

where  
2 2 2

1 1
2 2 2

1 2

2 2 2
1 2

ˆ ˆ ˆ1
ˆ ˆ ˆ1ˆ .

ˆ ˆ ˆ1

p p

p p

n n n p

P

ε ε ε
ε ε ε

ε ε ε

−

+

− − −

 
 
 =  
  
 

�
�

� � � �
�

 

Combine (A.2), (A.3), (A.8) and the assumptions about the densities of { }2
iε , 

the results of Theorem 3 holds by the Theorem 4.1 of [23]. 
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