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a b s t r a c t

We propose a new nonparametric independence test for two functional random vari-
ables. The test is based on a new dependence metric, the so-called angle covariance,
which fully characterizes the independence of the random variables and generalizes the
projection covariance proposed for random vectors. The angle covariance has a number
of desirable properties, including the equivalence of its zero value and the independence
of the two functional variables, and it can be applied to any functional data without finite
moment conditions. We construct a V -statistic estimator of the angle covariance, and
show that it has a Gaussian chaos limiting distribution under the independence null
hypothesis and a normal limiting distribution under the alternative hypothesis. The test
based on the estimated angle covariance is consistent against all alternatives and easy
to be implemented by the given random permutation method. Simulations show that
the test based on the angle covariance outperforms other competing tests for functional
data.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Over recent decades, functional data analysis (FDA) has been developed rapidly and become an important area of
tatistics. FDA offers effective tools for the analysis of high or infinite dimensional data, and meets the growing needs for
ata collection and analysis with the progress in technology. Many aspects of FDA, such as functional regression [11],
lustering and classification of functional data [27], have been extensively investigated, and a number of excellent
onographs about FDA have been published, see, for example, [3,7,8,14]. However, relatively little works focus on
easuring and testing the dependence of two functional random variables.
Testing the independence of random elements is a fundamental problem in statistics and has important applications.

t has been studied by many authors, and several excellent methods have been developed, including the distance
orrelation [21,22], the kernel based criterion [4,5,20], the maximal information coefficient [15], the copula based
easures [16,19], the projection correlation [28], the ball covariance [12], and others (see, for example, [23]). Many of

hese methods were developed for random variables in Euclidean spaces and may not be directly applied to functional
ata, which have infinite dimensions. Among them, an indispensable method is the distance correlation [21,22], which
an be used to measure and test the dependence between random vectors X and Y , provided that E(∥X∥ + ∥Y∥) < ∞. It
as been shown to work well in a number of situations, and extended to strong negative type metric space [10], and thus
an be applicable for functional data. In spite of its advantages, the distance covariance requires the finite first moment.
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hen the condition is violated, it may not behave well, as illustrated in Zhu et al. [28]. To remove the moment condition,
hu et al. [28] proposed a projection correlation for two random vectors based on the projections of the random vectors.
he projection correlation test is powerful in some cases, but it only deals with the random vectors in the Euclidean setting,
nd cannot be used straightforwardly to functional data. Actually, our simulations show that a naive use of the projection
orrelation test could suffer a loss of power for functional data. Another powerful tool suitable for functional data is the
all covariance [12]. It is designed to measure and test the dependence of random elements in Banach spaces, and can
e applied to many kinds of data. Both the distance covariance and the ball covariance test statistics are constructed
ith the metrics of the underlying spaces. Besides the metrics endowed in the underlying spaces, one may utilize more

nformation such as the features of the data or the geometric structures of the underlying spaces. For example, a functional
ariable is usually considered as an element of a Hilbert space and has some properties of functions such as periodicity
r monotonicity. It could improve the performance of an independence test if we combine these kinds of information in
n appropriate way.
In view of the preceding discussion, we would like to establish a general independence test for two random elements

alued in two separable Hilbert spaces, which requires less strict conditions such as finite moments, and uses more
nformation of the data in hand. More precisely, let (Ω,B, P) be a probability space, and (X, Y ) : Ω ↦→ H1 × H2 be
a vector of random elements, where H1,H2 are two separable Hilbert spaces. We aim to test

H0 : X and Y are independent vs. H1 : otherwise. (1)

To attain this goal, we first construct a quantity with projection and integration skill in separable Hilbert space, called angle
covariance, to measure and test the dependence of the random elements. The angle covariance involves the inner products
of the Hilbert spaces and some nondegenerate Gaussian measures on the spaces, thus it can combine the geometric
properties of Hilbert spaces and the features of the data by choosing appropriate Gaussian measures. The angle covariance
of X and Y is always nonnegative and is equal to zero if and only if X and Y are independent, and it is equal to the
projection covariance in Zhu et al. [28] in finite dimensional settings with the choice of the standard multivariate normal
distributions (see Remark 1 in Section 2). Then, we provide an empirical estimator of the angle covariance, and give
its asymptotic properties. It is shown that the estimator is n-consistent if X and Y are independent, and

√
n-consistent

therwise. Correspondingly, the test of independence based on the angle covariance is consistent against all alternatives,
nd easy to be implemented. The proposed test does not require any restriction to the underlining distributions. Through
umerical simulations, we show that it is more powerful than those based on other dependence metrics, such as distance
ovariance [22], projection covariance [28], and ball covariance [12] for functional data.
The rest of the paper is organized as follows: In Section 2, we explore the procedure of constructing angle covariance in

ilbert spaces. In Section 3, we give an estimator of the angle covariance and show its asymptotic properties. In Section 4,
e present the test procedure based on angle covariance in practice and provide an empirical criterion for the choice of
aussian measures. A group of finite sample simulation studies is carried out in Section 5. In Section 6, some discussions
re included. All technical proofs are presented in the Appendix.

. Angle covariance

In this section, we define the angle covariance of two random elements in separable Hilbert spaces (hereinafter all
ilbert spaces mentioned are separable). Suppose that X and Y are the two random elements defined in the previous
ection. For simplification of notations, we denote the associated norm ∥ · ∥ and inner product ⟨·, ·⟩ for both H1 and H2.
To test the independence of two random elements in Hilbert spaces, a natural approach is to convert the independence

f the functional random elements into that of real-valued random variables. The following lemma ensures that this is
easible.

emma 1. X and Y are independent if and only if ⟨X, f ⟩ and ⟨Y , g⟩ are independent for all f ∈ H1, g ∈ H2.

Instead of considering the original random elements, Lemma 1 shows that we only need to consider the projections of
he random elements, which are real variables. Given the projection directions f and g , let V = ⟨X, f ⟩, W = ⟨Y , g⟩, F (v, w)
be the joint distribution of (V ,W ), and F1(v) and F2(w) be the marginal distributions of V and W , respectively. Then V
and W are independent if and only if F (v, w) − F1(v)F2(w) = cov{I(⟨X, f ⟩ ≤ v), I(⟨Y , g⟩ ≤ w)} = 0, for all v, w ∈ R,
where I(·) is the indicator function. Therefore, by integrating the squared covariance, the dependence of X and Y can be
measured by the quantity∫

H1

∫
H2

∫
R2

cov2{I(⟨X, f ⟩ ≤ v), I(⟨Y , g⟩ ≤ w)}dF (v, w)µ1(df )µ2(dg), (2)

where µ1 and µ2 are two nondegenerate Gaussian measures in H1 and H2, respectively. The integral (2) is complex and
difficult to deal with. Motivated by Zhu et al. [28], we try to give an explicit form of the integral. Let (X i, Y i), i ∈ {1, . . . , 5}
2
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e independent copies of (X, Y ) and denote ⟨X i, f ⟩ = X i
f , ⟨Y

i, g⟩ = Y i
g . Then by Fubini’s theorem the integral can be

ewritten as

E
[∫

H1

∫
H2

{
I(X1

f ≤ X3
f )I(Y

1
g ≤ Y 3

g ) − I(X1
f ≤ X3

f )I(Y
2
g ≤ Y 3

g )
}

×
{
I(X4

f ≤ X3
f )I(Y

4
g ≤ Y 3

g ) − I(X4
f ≤ X3

f )I(Y
5
g ≤ Y 3

g )
}
µ1(df )µ2(dg)

]
. (3)

o compute the integrals over H1 and H2, recall the fact that a Gaussian measure on a separable Hilbert space can be
xpressed as countable products of measures (see Theorem 1.11 of [2]). With this merit we obtain the following theorem,
hich is a generalization of Lemma 1 in Zhu et al. [28].
Suppose that µ is a nondegenerate Gaussian measure on a separable Hilbert space H with mean zero and covariance

perator Q , and the eigenvalues and orthonormal eigenfunctions of Q are (λi, ei)∞i=1. For x ∈ H, define Q 1/2x =
∞

i=1
√

λi⟨x, ei⟩ei. Then we have the following theorem.

heorem 1. For any two nonzero elements U, V in a separable Hilbert space H, we have∫
H

I(⟨U, t⟩ ≤ 0)I(⟨V , t⟩ ≤ 0)µ(dt) =
1
2

−
1
2π

arccos
(

⟨Q 1/2U,Q 1/2V ⟩

∥Q 1/2U∥ · ∥Q 1/2V∥

)
,

here arccos(·) is the inverse cosine function.

With the help of Theorem 1, we can simplify the integral (3) into an explicit formula. Denote

θQ (X, X ′, X ′′) = arccos
(

⟨Q 1/2(X − X ′′),Q 1/2(X ′
− X ′′)⟩

∥Q 1/2(X − X ′′)∥ · ∥Q 1/2(X ′ − X ′′)∥

)
,

hen θQ (X, X ′, X ′′) is the angle between Q 1/2(X − X ′′) and Q 1/2(X ′
− X ′′). When the denominator is zero, we define

Q (X, X ′, X ′′) as zero. Choosing nondegenerate Gaussian measures µ1, µ2 on H1, H2 with mean zero and covariance
operators Q1, Q2 respectively, and ignoring the multiplier constant, we define the resulting quantity from integral (3)
as the squared angle covariance.

Definition 1. The squared angle covariance between X and Y is defined as

Acov2(X, Y ) =E
{
θQ1 (X

1, X4, X3)θQ2 (Y
1, Y 4, Y 3)

}
+ E

{
θQ1 (X

1, X4, X3)θQ2 (Y
2, Y 5, Y 3)

}
− 2E

{
θQ1 (X

1, X4, X3)θQ2 (Y
2, Y 4, Y 3)

}
,

and the angle covariance Acov(X, Y ) is the square root of Acov2(X, Y ).

Remark 1. The angle covariance is a natural extension of projection covariance [28] to functional data. Specifically, if the
dimensions of the underlying Hilbert spaces are finite and the chosen Gaussian measures are the standard multivariate
Gaussian measures (with mean zero and identity covariance matrix), then the angle covariance coincides with the
projection covariance. However, when the dimension of an underlying Hilbert space, say H1, is infinite, it is different.
In this case, the covariance operator Q1 is a compact operator, and Q 1/2

1 (H1) is the Cameron–Martin space of the measure
µ1, which is a dense subspace of H1 (see Chapter 2 of [2]).

The rest of this section reveals some properties of Acov2(X, Y ). Let

φ(x, x′, x′′) = θQ1 (x, x
′, x′′) − E

{
θQ1 (X

1, x′, x′′)
}

− E
{
θQ1 (x, X

2, x′′)
}

+ E
{
θQ1 (X

1, X2, x′′)
}
,

and

ϕ(y, y′, y′′) = θQ2 (y, y
′, y′′) − E

{
θQ2 (Y

1, y′, y′′)
}

− E
{
θQ2 (y, Y

2, y′′)
}

+ E
{
θQ2 (Y

1, Y 2, y′′)
}
.

Proposition 1. Let (X i, Y i), i = 1, 2, 3 be independent copies of (X, Y ). Then we have

(i) Acov2(X, Y ) = E
{
φ(X1, X2, X3)ϕ(Y 1, Y 2, Y 3)

}
;

(ii) Acov2(X, Y ) ≤

√
E
{
φ2(X1, X2, X3)

}
E
{
ϕ2(Y 1, Y 2, Y 3)

}
;

(iii) Acov(X, Y ) = 0 if and only if X and Y are independent;
(iv) Let a1 ∈ H1, a2 ∈ H2, b1, b2 be two nonzero scalar constants, then Acov(b1X + a1, b2Y + a2) = Acov(X, Y ).

Proposition 1 is parallel to Proposition 1 of Zhu et al. [28]. However, for unitary operators U1,U2 on H1,H2 respectively,
equality Acov(b1U1X + a1, b2U2Y + a2) = Acov(X, Y ) is usually not true, since a nondegenerate Gaussian measure on a
ilbert space of infinite dimension is not symmetric with respect to its eigenfunctions. In addition, Proposition 1(ii) shows
hat the ratio of Acov2(X, Y ) to the right hand side might be used to record the dependence level between X and Y , but
it should be noted that the ratio depends on the choices of µ1 and µ2.
3
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emark 2. Theorem 1 and Proposition 1 show the advantages of employing the Gaussian measures in the dependence
easure (3), although other choices of µ1 and µ2 might be possible. Firstly, by choosing the Gaussian measures, we
btain the explicit expression of quantity (3), which allows us to express the dependence of the random elements with
heir geometric characteristics. Secondly, we get the equivalence between the zero angle covariance and the independence
f two random elements. These advantages make it easier to estimate the angle covariance, and to obtain a consistent
est for independence.

. Empirical estimator and asymptotic results

We now give an estimator of Acov2(X, Y ) by Proposition 1(i). Let {(Xi, Yi), i ∈ {1, . . . , n}} be an independent and
dentically distributed (i.i.d.) sample of (X, Y ). Define, for i, j, k ∈ {1, . . . , n},

aijk = θQ1 (Xi, Xj, Xk), ai·k = n−1
n∑

j=1

aijk,

a·jk = n−1
n∑

i=1

aijk, a··k = n−2
n∑

i=1

n∑
j=1

aijk,

Aijk = aijk − ai·k − a·jk + a··k.

Similarly, define bijk = θQ2 (Yi, Yj, Yk) and Bijk = bijk − bi·k − b·jk + b··k, for i, j, k ∈ {1, . . . , n}. When i = k or j = k, to avoid
possible confusion, we define aijk = bijk = 0. Then an estimator of Acov2(X, Y ) is given by

Acov2n(X, Y ) = n−3
n∑

i,j,k=1

AijkBijk. (4)

This estimator is easy to compute when using the permutation method given below to obtain the critical value of the
test. Furthermore, we have the following theorems.

Theorem 2. For an i.i.d. random sample {(Xi, Yi), i ∈ {1, . . . , n}}, the estimator (4) equals

2πn−1
n∑

i=1

[∫ ∫
{F̂ (⟨Xi, f ⟩, ⟨Yi, g⟩) − F̂1(⟨Xi, f ⟩)F̂2(⟨Yi, g⟩)}2µ1(df )µ2(dg)

]
,

where F̂ , F̂1 and F̂2 stand for the empirical distributions of (⟨X, f ⟩, ⟨Y , g⟩), ⟨X, f ⟩ and ⟨Y , g⟩, respectively.

Theorem 2 recovers the original formulation (2), which is more intuitive, and indicates that Acov2n(X, Y ) ≥ 0. In the
Appendix, we show that Acov2n(X, Y ) is a V -statistic with a kernel of degree 7, and it is degenerate with rank 2 under
H0. Therefore, we obtain its consistency and asymptotic distributions according to the limit theory of V -statistics (or
U-statistics).

Theorem 3. For an i.i.d. random sample {(Xi, Yi), i ∈ {1, . . . , n}}, we have

lim
n→∞

Acovn(X, Y ) = Acov(X, Y )

almost surely.

Theorem 4. For an i.i.d. random sample {(Xi, Yi), i ∈ {1, . . . , n}}, we have

(i) Under H0, n · Acov2n(X, Y )
d

−→
∑

∞

i=1 γiZ2
i , where Zis are i.i.d. standard normal random variables and the nonnegative

constants γis depend on the distribution of (X, Y ) and the chosen Gaussian measures.
(ii) Under H1, n1/2

{Acov2n(X, Y ) − Acov2(X, Y )}
d

−→ N (0, 72ζ1), where ζ1 is defined in the proof.

4. Test procedure

According to the result of Theorem 4, we define the test statistic for the hypothesis (1) as

Tn = n · Acov2n(X, Y ), (5)

and reject H0 when Tn is large. Theorems 3 and 4 indicate that the test statistic Tn converges in distribution to a weighted
sum of independent χ2 variables with 1 degree of freedom (which is a special Gaussian chaos) if X and Y are independent,
and diverges to ∞ otherwise. Therefore, the test based on the angle covariance is consistent against all alternatives
without requiring any moment conditions.
4
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Since the γis in Theorem 4 are unknown, the asymptotic distribution cannot be used directly to compute the critical
value of the test statistic Tn. In practice, we use a permutation method to approximate the asymptotic null distribution
of Tn. The algorithm generating an approximated p-value is given as follows:

Algorithm 1 (p-value).

(1) For an i.i.d. random sample {(Xi, Yi), i ∈ {1, . . . , n}}, one computes the statistic Tn using (5).
(2) For each ℓ, 1 ≤ ℓ ≤ L, generate a random permutation of Y = (Y1, . . . , Yn), denoted as Y (ℓ)

= (Y (ℓ)
1 , . . . , Y (ℓ)

n ).
(3) Compute the test statistic with {(Xi, Y

(ℓ)
i ), i ∈ {1, . . . , n}}, denoted as T (ℓ)

n .
(4) Repeat steps (2) and (3) L times and collect data T (1)

n , . . . , T (L)
n . The p-value obtained from this permutation procedure

is

p-value =

∑L
ℓ=1 I(T

(ℓ)
n ≥ Tn)
L

.

One rejects the null hypothesis H0 if the p-value is smaller than the given significance level.

The permutation method is widely used in independence testing problems, see, for example, Székely et al. [22], Székely
nd Rizzo [21], Gretton et al. [5], Pfister et al. [13] and Shen et al. [18]. It has desirable performance even if the sample
ize is small. In our simulations, L = 300 permutations achieve a good control of Type-I error frequencies.

emark 3. The choice of the Gaussian measures with zero means influences the practical performance of the angle
ovariance test. We make the choice with the eigenvalues and the corresponding orthonormal eigenfunctions of their
ovariance operators, and give the following empirical criterion to determine a suitable nondegenerate Gaussian measure.
irstly, choose a suitable orthonormal basis (ei)∞i=1 for the expression of functional data. For example, if the data has
eriodic property then we may use the Fourier basis. Some useful principles for choosing basis system are found in Chapter
of Ramsay and Silverman [14]. After choosing a suitable basis, we choose a positive series (λi)∞i=1 satisfying

∑
∞

i=1 λi < ∞,
nd construct the covariance operator by Qx =

∑
∞

i=1 λi⟨x, ei⟩ei, such that Q has eigenvalues and eigenfunctions (λi, ei)∞i=1
and decide a Gaussian measure uniquely. Note that these eigenfunctions are the basis system for the expression of the
associated functional data and are used in the computation of Tn. In the simulations followed, we take λi = 1/ia with
a > 1. See Sections 5 and 6 for more discussions.

5. Simulation study

In this section, we investigate the finite sample performance of the proposed independence test by simulations.
Three experiment examples are designed to evaluate the real size and the power of the test. We consider to test the
independence of two functional variables in Examples 1 and 2, and the independence between a functional variable and
a scalar variable in Example 3. All the functional data produced in the simulations are defined on [0, 1], and are observed
at 201 equal-spaced points in [0, 1]. The eigenfunctions (ei)∞i=1 of the covariance operator of the Gaussian measures are
chosen according to the feature of the data, and the corresponding eigenvalues are set to λi = 1/ia with a = 3 and
a = 2.5. The permutation number is taken as L = 300.

Several independence tests are compared in the simulations. For convenience, we denote our test as acov (acov1 for
a = 3 and acov2 for a = 2.5), and the tests based on the projection covariance [28], the distance covariance [22], and the
ball covariance [12] as pcov, dcov and bcov respectively. Here, the pcov is carried out for the observed 201 dimension
vectors of the functions. We implement dcov by calling dcov.test function in R package energy and bcov by calling
bcov.test function in R package Ball.

Different sample sizes and dependence levels between the two random variables are considered in the simulations to
evaluate the performance of tests, and the empirical size or power of the tests (the rejection proportions) are recorded
through 1000 repetitions at significance level 0.05 for each setting.

Example 1. This example is designed to be parallel to Example 1 in Zhu et al. [28], which was for real vectors. It consists
of the following three scenarios.
(i) Similar to the functional data considered in Hall and Hosseini-Nasab [6], we take X(t) =

∑p
i=1 ξiφ

∗

i (t), where
φ∗

i (t) =
√
2 cos(iπ t) and ξis are independent random variables distributed as the Cauchy distribution with location

zero and scale 0.5. Let Y (t) =
∑p

i=1 γiφ
∗

i (t), where γi = f (ξi) for i ∈ {1, . . . ,m} and γi (i ∈ {m + 1, . . . , p}) are
independently generated from the standard normal distribution. We consider four relationships: f (x) = x3, f (x) = x2,
f (x) = sin(x) and f (x) = cos(x). Note that the last three functions are not monotone.

(ii) The conditions are the same as scenario (i), except that γi (i ∈ {m + 1, . . . , p}) are sampled independently from the
Cauchy distribution with location zero and scale 0.5.

(iii) The conditions are the same as scenario (i), except that ξi (i ∈ {1, . . . , p}) are sampled independently from the
standard normal distribution.
5
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Fig. 1. Observed curves of X and Y in Example 1 with f (x) = x3 and 10 observed curves are shown in each graph.

In this example, the parameter m is designed to produce different dependence levels between the two random
variables, where m = 0 implies that X and Y are independent, and the dependence level increases with m. In all the three
scenarios, we fix the sample size to n = 30 and p = 50, and set m = 0,m = 1,m = 3,m = 5,m = 10 respectively to
generate Xs and Y s. To implement our test, we plot the functional data. As shown in Fig. 1, the curves of X and Y reveal
periodic feature, hence we choose the Fourier basis as the eigenfunctions of the covariance operators of the Gaussian
measures.

Tables 1–3 summarize the empirical sizes and powers of the tests for all the settings. The empirical sizes (for the
settings with m = 0) are very close to the nominal significance level, and the acov tests have higher powers (for the
settings with m > 0) than other tests in all the scenarios. It seems that the angle covariance is more sensitive to the
weak dependence relationships, as is shown, for example, in the case of f (x) = x3 and m = 1. From these results, we can
6
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Table 1
Empirical sizes and powers: Example 1(i). H0 is true when m = 0, and H1 holds when
m > 0. The empirical sizes of all the tests are close to the significance level and the acov
tests have higher powers than other tests.
Relationship Method m = 0 m = 1 m = 3 m = 5 m = 10

f (x) = x3

acov1 0.037 0.933 1.000 1.000 1.000
acov2 0.038 0.928 1.000 1.000 1.000
pcov 0.051 0.156 0.372 0.521 0.804
dcov 0.054 0.083 0.155 0.235 0.370
bcov 0.044 0.102 0.178 0.265 0.629

f (x) = x2

acov1 0.043 0.381 0.781 0.901 0.989
acov2 0.047 0.373 0.779 0.896 0.980
pcov 0.052 0.105 0.192 0.271 0.515
dcov 0.054 0.075 0.163 0.210 0.387
bcov 0.054 0.079 0.149 0.244 0.553

f (x) = sin(x)

acov1 0.057 0.154 0.479 0.584 0.619
acov2 0.054 0.185 0.542 0.644 0.676
pcov 0.056 0.055 0.042 0.047 0.057
dcov 0.055 0.052 0.048 0.051 0.053
bcov 0.051 0.048 0.048 0.039 0.066

f (x) = cos(x)

acov1 0.048 0.106 0.196 0.241 0.255
acov2 0.053 0.110 0.208 0.247 0.247
pcov 0.053 0.056 0.050 0.048 0.062
dcov 0.046 0.063 0.042 0.042 0.056
bcov 0.046 0.060 0.053 0.054 0.061

Table 2
Empirical sizes and powers: Example 1(ii). H0 is true when m = 0, and H1 holds when
m > 0. The empirical sizes of all the tests are close to the significance level and the acov
tests have higher powers than other tests.
Relationship Method m = 0 m = 1 m = 3 m = 5 m = 10

f (x) = x3

acov1 0.053 0.872 1.000 1.000 1.000
acov2 0.053 0.880 1.000 1.000 1.000
pcov 0.051 0.133 0.293 0.522 0.797
dcov 0.050 0.080 0.141 0.214 0.366
bcov 0.050 0.072 0.140 0.281 0.591

f (x) = x2

acov1 0.049 0.344 0.747 0.897 0.991
acov2 0.052 0.370 0.749 0.882 0.982
pcov 0.053 0.092 0.165 0.284 0.504
dcov 0.046 0.075 0.136 0.214 0.346
bcov 0.047 0.072 0.108 0.206 0.470

f (x) = sin(x)

acov1 0.042 0.089 0.158 0.230 0.409
acov2 0.043 0.094 0.222 0.301 0.444
pcov 0.046 0.050 0.052 0.056 0.043
dcov 0.048 0.050 0.053 0.054 0.061
bcov 0.053 0.046 0.051 0.049 0.039

f (x) = cos(x)

acov1 0.049 0.057 0.079 0.107 0.155
acov2 0.048 0.061 0.074 0.127 0.152
pcov 0.052 0.054 0.055 0.042 0.046
dcov 0.054 0.046 0.046 0.047 0.037
bcov 0.042 0.066 0.045 0.047 0.042

see that when the data have no finite first order moment, acov, pcov, bcov have higher power than dcov, for which the
moment condition is needed theoretically. It is also shown that all the tests are powerful for the monotone relationship
(i.e. f (x) = x3), and acov tests are better to recognize the non-monotone dependence relationships. In addition, it seems
that the relationship f (x) = cos(x) is hard to be recognized, for which all the tests performs poorly. The powers increase
as m gets larger (or the dependence becomes stronger) for the angle covariance tests, but stay at about the nominal
significance level for others.

Example 2. Consider 4 models with the formula Y (t) = f (X(t)) + ε(t), t ∈ [0, 1], where ε is generated by Wiener
process, X and Y are the focused stochastic processes. Three processes, including Ornstein–Uhlenbeck process (OU) (a
Gaussian process with mean 0 and covariance E{X(s)X(t)} = 3e−(s+t)/3

{e2(s+t)/3
− 1}, s, t ∈ [0, 1]), Gaussian process

(GP) with mean 0 and covariance E{X(s)X(t)} = 1 when s = t and 0 otherwise, s, t ∈ [0, 1], and Gaussian process
with exponential variogram (VP) (a Gaussian process with mean 0 and covariance E{X(s)X(t)} = e−5|s−t|, s, t ∈ [0, 1])
7
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Table 3
Empirical sizes and powers: Example 1(iii). H0 is true when m = 0, and H1 holds when
m > 0. The empirical sizes of all the tests are close to the significance level and the acov
tests have higher powers than other tests.
Relationship Method m = 0 m = 1 m = 3 m = 5 m = 10

f (x) = x3

acov1 0.050 0.995 1.000 1.000 1.000
acov2 0.053 0.995 1.000 1.000 1.000
pcov 0.054 0.390 0.889 0.991 1.000
dcov 0.046 0.392 0.871 0.980 1.000
bcov 0.047 0.175 0.510 0.721 0.958

f (x) = x2

acov1 0.049 0.198 0.424 0.426 0.424
acov2 0.049 0.208 0.411 0.413 0.408
pcov 0.041 0.060 0.075 0.105 0.132
dcov 0.039 0.068 0.086 0.136 0.205
bcov 0.058 0.078 0.119 0.203 0.420

f (x) = sin(x)

acov1 0.062 0.969 1.000 1.000 1.000
acov2 0.057 0.972 1.000 1.000 1.000
pcov 0.050 0.062 0.127 0.191 0.499
dcov 0.049 0.054 0.131 0.191 0.492
bcov 0.059 0.052 0.080 0.104 0.211

f (x) = cos(x)

acov1 0.042 0.101 0.238 0.327 0.422
acov2 0.040 0.099 0.262 0.336 0.414
pcov 0.034 0.055 0.049 0.054 0.055
dcov 0.036 0.053 0.045 0.055 0.065
bcov 0.043 0.062 0.055 0.071 0.088

for X are employed, and they are generated by rproc2fdata function with default parameters in fda.usc package
(https://cran.r-project.org/web/packages/fda.usc/index.html). The models for generating Y (t) are as follows:
(i) Y (t) = ε(t), t ∈ [0, 1].
(ii) Y (t) = r sin(X(t)) + ε(t), t ∈ [0, 1], r takes values 0.5, 0.25, 0.05 for GP, OU and VP respectively.
(iii) Y (t) = reX(t) + ε(t), t ∈ [0, 1], r takes values 0.5, 0.25, 0.05 for GP, OU and VP respectively.
(iv) Y (t) = r tan(X(t)) + ε(t), t ∈ [0, 1], r takes values 0.5, 0.5, 0.05 for GP, OU and VP respectively.

In Example 2, the sample size varies from 20 to 40, and the significance level is still 0.05. As shown in Fig. 2, not all
observed trajectories reveal obvious periodic feature. In this case, we try to choose the spline basis as the eigenfunctions
of the covariance operators of the Gaussian measures. Table 4 summarizes the results. The empirical sizes of all the
tests approximate the significance level well. Our test performs better in power than other tests except that when the
relationship functions are exp(·), tan(·) and the underlying process is OU. In these cases, our test is slightly worse than
other tests and the differences become smaller when the sample size gets larger. However, in other cases, especially when
the underlying X process is GP or VP, the performance of our test is much more powerful than other tests. It should be
noted that in some cases, the powers of other tests increase slowly with the sample size. For example, when the X process
is generated from GP or VP in Scenario (ii), the powers of pcov, docv, bcov are almost the same even though the sample
size goes larger.

Example 3. Consider X(t) =
∑50

i=1 ξiφ
∗

i (t), where φ∗

i (t) =
√
2 cos(iπ t) and ξis are independent random variables

distributed as the Cauchy distribution with location zero and scale 1 or the standard normal distribution.
(i) Y is generated from the normal distribution N (0, 1).
(ii) Y is generated from the uniform distribution U(0, 1).
(iii) Y = 5⟨X, β⟩ + ϵ, where β(t) = sin(t) + cos(t), and the error ϵ is from the normal distribution N (0, 1).
(iv) Y = ξ1 + ξ 2

2 + ϵ, where ϵ is from the normal distribution N (0, 1).

We set the significance level as 0.05, and vary the sample size n from 20 to 40 in Example 3. Similar to Example 1,
we choose the Fourier basis. The results are summarized in Table 5. The empirical sizes of all the tests are close to the
significance level. The tests based on the angle covariance outperform other tests. The powers of all the tests increase as
the sample size gets larger. Note that pcov is slightly worse than dcov in many cases, which shows the improvement of
the proposed method to the projection correlation again.

Totally, we find that the tests based on the angle covariance work well in most considered scenarios, and the powers
increase rationally with the sample size. The results have shown the difference between the angle covariance test and the
others. Although they are all of omnibus tests, their original working orientation are different. The pcov test is essentially
for finite dimension data, and is corresponding to the choice of identity covariance operator (which is not compact in
infinite dimension case) in our working frame. The distance covariance test was originally designed for finite dimension
data; although it has been generalized to functional data, the moment condition should be satisfied. The ball covariance
test is for data in metric space, less information on geometry is available in general.
8
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Fig. 2. Trajectories of X and Y in Example 2. The curves of Y (t) in (ii), (iii) and (iv) are obtained under the condition that X is OU process. Ten
ealizations of the given process are shown in each graph.

. Discussion

In this paper, we use the angle covariance to test the independence of two random elements in Hilbert spaces, which is
specially useful in functional data analysis. In the Hilbert setting, the proposed angle covariance has desirable properties,
ncluding the equivalence of zero angle covariance and the independence, the consistency of the test against all kinds of
iscrepancies from the independence null hypothesis. The finite sample performance shows that the proposed test is often
ore powerful than the tests based on other dependence measures for functional data.
The proposed test depends on the chosen Gaussian measures, or the eigenvalues and the eigenfunction basis systems

f their covariance operators. We only present some experience from simulations in this paper. In general, the eigenvalues
f the form 1/ia with a > 1 works well. Note that when a is large, the projection of Q 1/2X on eigenfunction e decrease
i

9
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Table 4
Empirical sizes and powers: Example 2. H0 holds for scenario (i), and H1 holds for
scenarios (ii)–(iv). OU, GP and VP stand for the Ornstein–Uhlenbeck, Gaussian, and
Gaussian process with exponential variogram, respectively. The empirical sizes of all the
tests are close to the significance level 0.05 and the acov tests have higher powers than
other tests in most considered cases.
Size Method n = 20 n = 30 n = 40

OU GP VP OU GP VP OU GP VP

(i)

acov1 0.053 0.053 0.062 0.051 0.055 0.047 0.055 0.043 0.049
acov2 0.047 0.047 0.059 0.051 0.058 0.041 0.046 0.044 0.049
pcov 0.050 0.063 0.044 0.039 0.052 0.034 0.061 0.052 0.035
dcov 0.056 0.063 0.040 0.042 0.054 0.039 0.064 0.045 0.036
bcov 0.044 0.049 0.043 0.041 0.060 0.042 0.062 0.042 0.050

Power

(ii)

acov1 0.510 1.000 0.457 0.711 1.000 0.761 0.855 1.000 0.936
acov2 0.542 1.000 0.930 0.746 1.000 0.997 0.871 1.000 1.000
pcov 0.278 0.072 0.047 0.431 0.067 0.044 0.581 0.109 0.055
dcov 0.280 0.066 0.048 0.411 0.054 0.044 0.565 0.087 0.062
bcov 0.184 0.059 0.053 0.248 0.062 0.051 0.347 0.069 0.059

(iii)

acov1 0.635 1.000 0.920 0.811 1.000 0.992 0.922 1.000 1.000
acov2 0.615 1.000 0.992 0.799 1.000 1.000 0.908 1.000 1.000
pcov 0.606 0.220 0.062 0.757 0.356 0.067 0.881 0.463 0.093
dcov 0.654 0.183 0.057 0.805 0.274 0.057 0.901 0.335 0.094
bcov 0.460 0.324 0.065 0.628 0.477 0.073 0.760 0.595 0.077

(iv)

acov1 0.692 0.330 0.541 0.868 0.388 0.713 0.957 0.484 0.799
acov2 0.638 0.438 0.683 0.829 0.527 0.841 0.937 0.646 0.910
pcov 0.759 0.086 0.126 0.908 0.070 0.164 0.968 0.082 0.141
dcov 0.800 0.074 0.155 0.858 0.059 0.188 0.921 0.060 0.177
bcov 0.888 0.088 0.360 0.988 0.101 0.518 0.998 0.115 0.635

Table 5
Empirical sizes and powers: Example 3. H0 hold for scenarios (i) and (ii), and H1 holds
for scenarios (iii) and (iv). The ‘Cauchy’ and ‘normal’ indicate the distributions of ξis in
Xs. The empirical sizes of all the tests are close to the significance level 0.05 and the
acov tests have higher powers than other tests.
Size Method n = 20 n = 30 n = 40

Cauchy Normal Cauchy Normal Cauchy Normal

(i)

acov1 0.044 0.041 0.045 0.040 0.047 0.045
acov2 0.044 0.041 0.053 0.047 0.042 0.048
pcov 0.053 0.044 0.051 0.043 0.051 0.050
dcov 0.052 0.049 0.056 0.041 0.045 0.049
bcov 0.052 0.053 0.057 0.039 0.043 0.049

(ii)

acov1 0.049 0.046 0.053 0.033 0.046 0.052
acov2 0.050 0.051 0.048 0.035 0.038 0.056
pcov 0.040 0.050 0.042 0.042 0.048 0.062
dcov 0.047 0.048 0.048 0.044 0.046 0.059
bcov 0.044 0.051 0.051 0.048 0.038 0.069

Power

(iii)

acov1 0.786 0.351 0.923 0.561 0.987 0.696
acov2 0.754 0.356 0.909 0.546 0.985 0.683
pcov 0.233 0.107 0.377 0.164 0.516 0.220
dcov 0.272 0.112 0.315 0.180 0.401 0.233
bcov 0.223 0.088 0.302 0.113 0.385 0.102

(iv)

acov1 0.566 0.592 0.769 0.790 0.899 0.909
acov2 0.593 0.591 0.786 0.796 0.910 0.911
pcov 0.086 0.119 0.093 0.223 0.118 0.276
dcov 0.093 0.150 0.104 0.228 0.109 0.282
bcov 0.093 0.110 0.100 0.169 0.109 0.211

rapidly with i, and the angle obtained depends mainly on the first several coordinates of X . As for the eigenfunction basis,
we have only tried the Fourier basis and spline basis. Both are easy to implement. Other basis, like Legendre polynomials,
should be explored in the future. Furthermore, it may be desirable to provide a data-driven and powerful criterion to
decide suitable nondegenerate Gaussian measures. The functional principal components and canonical correlation analysis
might be useful to construct a data-driven method.
10
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ppendix. Proofs of the theorems

roof of Lemma 1. Suppose that X and Y are independent. For any f ∈ H1 and g ∈ H2, ⟨X, f ⟩ and ⟨Y , g⟩ are measurable
functions of X and Y respectively. Hence, ⟨X, f ⟩ and ⟨Y , g⟩ are independent.

Now suppose that ⟨X, f ⟩ and ⟨Y , g⟩ are independent for any f ∈ H1 and g ∈ H2. Then, by Proposition 2.10 of Da Prato
[2], Eeis⟨X,f ⟩+it⟨Y ,g⟩

= Eeis⟨X,f ⟩Eeit⟨Y ,g⟩ for any f ∈ H1, g ∈ H2, s, t ∈ R. Let s = t = 1, we have Eei⟨X,f ⟩+i⟨Y ,g⟩
= Eei⟨X,f ⟩Eei⟨Y ,g⟩

for any f ∈ H1 and g ∈ H2. Using Proposition 2.10 of Da Prato [2] again, X and Y are independent. □

To prove Theorem 1, we firstly recall a representation of Gaussian measures. Suppose that µ is a nondegenerate
Gaussian measure in a separable Hilbert spaceHwith mean ν and covariance operator Q , then the characteristic functional
(or the Fourier transform) has the form ϕµ(t) = exp{i⟨ν, t⟩ −

1
2 ⟨Qt, t⟩}. µ is nondegenerate if the operator Q is strictly

ositive. Let {ek} be the orthonormal eigenvectors of Q and {λk} the corresponding eigenvalues, i.e., Qek = λkek, for any
∈ {1, 2, . . .}. Let νk = ⟨ν, ek⟩ and µk = N(νk, λk) be the normal probability measure with mean νk and variance λk, that

is,

µk(dx) =
1

√
2πλk

e−
(x−νk)

2

2λk dx, x ∈ R.

For any x ∈ H, let xk = ⟨x, ek⟩. Then H is isomorphic to the Hilbert space ℓ2 of all sequences (x1, x2, . . .) of real numbers
uch that

∑
∞

i=1 x
2
i < ∞. By Theorem 1.11 of Da Prato [2], µ =

∏
∞

k=1 µk, where
∏

∞

k=1 µk is countable product of measures
efined through

∏
∞

k=1 µk(Cm,A) = (µ1 × · · · × µm)(A) for any cylindrical set Cm,A = A×R×R× · · · of R∞, A is a Borel set
of Rm, see also e.g. Section 6.3 Ambrosio et al. [1].

Secondly, we need following Lemma 2.

Lemma 2. Suppose that µ is a Gaussian measure in Rm with mean zero and covariance matrix Im×m. For any nonzero
U, V ∈ Rm, we have∫

Rm
I(⟨t,U⟩ ≤ 0)I(⟨t, V ⟩ ≤ 0)µ(dt) =

1
2

−
1
2π

arccos
(

⟨U, V ⟩

∥U∥ · ∥V∥

)
.

roof. Without loss of generality, we assume the norms of U and V equal to 1. We first prove the special case m = 2.
et t1 = r cos(θ ), t2 = r sin(θ ), r ≥ 0, 0 ≤ θ ≤ 2π , U = (cos(θ1), sin(θ1)) and V = (cos(θ2), sin(θ2)). We will assume
hat 0 ≤ θ1 ≤ θ2 ≤ π , otherwise we can rotate the coordinates since the standard multivariate normal distribution is
nvariant under rotation.∫

R2
I(⟨t,U⟩ ≤ 0)I(⟨t, V ⟩ ≤ 0)µ(dt) =

1
2π

∫
R2

I(t1 cos θ1 + t2 sin θ1 ≤ 0)I(t1 cos θ2 + t2 sin θ2 ≤ 0)e−
t21+t22

2 dt1dt2

=
1
2π

∫
r≥0,0≤θ≤2π

I(cos(θ − θ1) ≤ 0)I(cos(θ − θ2) ≤ 0)e−
r2
2 rdrdθ

=
1
2

−
1
2π

|θ2 − θ1| =
1
2

−
1
2π

arccos
(

⟨U, V ⟩

∥U∥ · ∥V∥

)
.

or the general case, by Proposition 3.3.2 of Vershynin [26], if g ∼ N(0, Im×m), then Σg ∼ N(0, Im×m), where Σ is an
rthogonal matrix. Hence, we can assume that U = (u1, u2, 0, . . . , 0), V = (v1, v2, 0, . . . , 0). Therefore,∫

Rm
I(⟨t,U⟩ ≤ 0)I(⟨t, V ⟩ ≤ 0)µ(dt) =

1
2π

∫
R2

I(t1u1 + t2u2 ≤ 0)I(t1v1 + t2v2 ≤ 0)e−
t21+t22

2 dt1dt2

=
1
2

−
1
2π

arccos
(

⟨U, V ⟩

∥U∥ · ∥V∥

)
.

The last equation follows from the previous result. We complete the proof. □

Proof of Theorem 1. By Theorem 1.11 of Da Prato [2], µ =
∏

∞

k=1 µk, where

µk(dx) =
1

√ e−
x2k
2λk dxk, xk = ⟨x, ek⟩ ∈ R.
2πλk

11
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or any U, V , t ∈ H, write U =
∑

∞

k=1 ukek, V =
∑

∞

k=1 vkek, t =
∑

∞

k=1 tkek. Let Um =
∑m

k=1 ukek, Vm =
∑m

k=1 vkek,
τm =

∑m
k=1 tkek, fm(t) = I(⟨t,Um⟩ ≤ 0)I(⟨t, Vm⟩ ≤ 0) and f (t) = I (⟨t,U⟩ ≤ 0) I (⟨t, V ⟩ ≤ 0). Then for all t ∈ H,

fm(t) → f (t), as m → ∞. Note that∫
H

I(⟨t,Um⟩ ≤ 0)I(⟨t, Vm⟩ ≤ 0)µ(dt) =

∫
Rm

I (⟨τm,Um⟩ ≤ 0) I (⟨τm, Vm⟩ ≤ 0) µ1(dt1) . . . µm(dtm)

=

∫
Rm

I(t1u1 + · · · + tmum ≤ 0)I(t1v1 + · · · + tmvm ≤ 0)µ1(dt1) . . . µm(dtm)

=

∫
Rm

I
(
⟨τ ′

m,Um ◦ λm⟩ ≤ 0
)
I
(
⟨τ ′

m, Vm ◦ λm⟩ ≤ 0
)
µ′

1(dt
′

1) . . . µ
′

m(dt
′

m)

=
1
2

−
1
2π

arccos
(

⟨Um ◦ λm, Vm ◦ λm⟩

∥Um ◦ λm∥∥Vm ◦ λm∥

)
,

where τ ′
m =

(
t1/

√
λ1, . . . , tm/

√
λm

)
, Um ◦ λm =

(
u1

√
λ1, . . . , um

√
λm

)
, t ′i = ti/

√
λ, µ′

i are the standard normal measures.
he last equality follows from Lemma 2. By the dominated convergence theorem,∫

H
I(⟨t,U⟩ ≤ 0)I(⟨t, V ⟩ ≤ 0)µ(dt) = lim

m→∞

∫
H

I(⟨t,Um⟩ ≤ 0)I(⟨t, Vm⟩ ≤ 0)µ(dt)

= lim
m→∞

{
1
2

−
1
2π

arccos
(

⟨Um ◦ λm, Vm ◦ λm⟩

∥Um ◦ λm∥ · ∥Vm ◦ λm∥

)}
=

1
2

−
1
2π

arccos
(

⟨Q 1/2U,Q 1/2V ⟩

∥Q 1/2U∥ · ∥Q 1/2V∥

)
.

e complete the proof. □

roof of Proposition 1. (i) Note that

E
{
φ(X1, X2, X3)ϕ(Y 1, Y 2, Y 3)

}
=E

[{
θQ1 (X

1, X2, X3) − θQ1 (X
4, X2, X3) − θQ1 (X

1, X5, X3) + θQ1 (X
4, X5, Y 3)

}
×

{
θQ2 (Y

1, Y 2, Y 3) − θQ2 (Y
6, Y 2, Y 3) − θQ1 (Y

1, Y 7, Y 3) + θQ1 (Y
6, Y 7, Y 3)

}]
=E

{
θQ1 (X

1, X2, X3)θQ2 (Y
1, Y 2, Y 3)

}
− E

{
θQ1 (X

1, X2, X3)θQ2 (Y
6, Y 2, Y 3)

}
− E

{
θQ1 (X

1, X2, X3)θQ2 (Y
1, Y 7, Y 3)

}
+ E

{
θQ1 (X

1, X2, X3)θQ2 (Y
6, Y 7, Y 3)

}
− E

{
θQ1 (X

4, X2, X3)θQ2 (Y
1, Y 2, Y 3)

}
+ E

{
θQ1 (X

4, X2, X3)θQ2 (Y
6, Y 2, Y 3)

}
+ E

{
θQ1 (X

4, X2, X3)θQ2 (Y
1, Y 7, Y 3)

}
− E

{
θQ1 (X

4, X2, X3)θQ2 (Y
6, Y 7, Y 3)

}
− E

{
θQ1 (X

1, X5, X3)θQ2 (Y
1, Y 2, Y 3)

}
+ E

{
θQ1 (X

1, X5, X3)θQ2 (Y
6, Y 2, Y 3)

}
+ E

{
θQ1 (X

1, X5, X3)θQ2 (Y
1, Y 7, Y 3)

}
− E

{
θQ1 (X

1, X5, X3)θQ2 (Y
6, Y 7, Y 3)

}
+ E

{
θQ1 (X

4, X5, X3)θQ2 (Y
1, Y 2, Y 3)

}
− E

{
θQ1 (X

4, X5, X3)θQ2 (Y
6, Y 2, Y 3)

}
− E

{
θQ1 (X

4, X5, X3)θQ2 (Y
1, Y 7, Y 3)

}
+ E

{
θQ1 (X

4, X5, X3)θQ2 (Y
6, Y 7, Y 3)

}
:=J1 − J2 − J3 + · · · + J16.

ince

J2 = J3 = J5 = J6 = J9 = J11

nd

J4 = J7 = J8 = J10 = J12 = J13 = J14 = J15 = J16,

e have

J1 − J2 − J3 + · · · + J16 =J1 − 2J2 + J4
=E

{
θQ1 (X

1, X2, X3)θQ2 (Y
1, Y 2, Y 3)

}
− 2E

{
θQ1 (X

1, X2, X3)θQ2 (Y
6, Y 2, Y 3)

}
+ E

{
θQ1 (X

1, X2, X3)θQ2 (Y
6, Y 7, Y 3)

}
=Acov2(X, Y ).

(ii) Using Cauchy–Schwarz inequality, the conclusion follows.
12
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(iii) By the definition of Acov(X, Y ), if X and Y are independent, then Acov(X, Y ) = 0 obviously.
Now suppose that Acov(X, Y ) = 0. By the construction of Acov2(X, Y ), it follows that there exist A ⊂ H1 and B ⊂ H2

uch that µ1(A)×µ2(B) = 1 and for any g ∈ A and f ∈ B, ⟨X, g⟩ and ⟨Y , f ⟩ are independent. Then µ1(Ā) = 1 and µ2(B̄) = 1,
where Ā and B̄ denote the closures of A and B respectively. Since the Gaussian measures µ1 and µ2 are nondegenerate,
by Theorem 1 and Corollary of Vakhania [24], Ā = H1 and B̄ = H2. This means that for any g ∈ H1, f ∈ H2, there exists
gn ∈ A and fn ∈ B, such that gn → g and fn → f as n → ∞. Since ⟨X, gn⟩ and ⟨Y , fn⟩ are independent, by the result on
page 251 of Vakhania et al. [25] , ⟨X, g⟩ and ⟨Y , f ⟩ are independent. Then by Lemma 1, X and Y are independent.

(iv) We only need to verify that θQ1 (b1X
1

+ a1, b1X2
+ a1, b1X3

+ a1) = θQ1 (X
1, X2, X3) and θQ2 (b2Y

1
+ a2, b2Y 2

+

a2, b2Y 3
+ a2) = θQ2 (Y

1, Y 2, Y 3). We show the first equation; the other can be verified similarly. Obviously we have
Q 1/2bX = bQ 1/2X for any constant b. Therefore,

θQ1 (b1X
1
+ a1, b1X2

+ a1, b1X3
+ a1) = arccos

(
⟨Q 1/2b1(X1

− X3),Q 1/2b1(X2
− X3)⟩

∥Q 1/2b1(X1 − X3)∥ · ∥Q 1/2b1(X2 − X3)∥

)
= arccos

(
⟨Q 1/2(X1

− X3),Q 1/2(X2
− X3)⟩

∥Q 1/2(X1 − X3)∥ · ∥Q 1/2(X2 − X3)∥

)
= θQ1 (X

1, X2, X3).

The proof is complete. □

Proof of Theorem 2. We prove that Acov2n(X, Y ) is equal to

2πn−1
n∑

k=1

(∫ ∫
{F̂ (⟨Xk, f ⟩, ⟨Yk, g⟩) − F̂1(⟨Xk, f ⟩)F̂2(⟨Yk, g⟩)}2µ1(df )µ2(dg)

)
.

Using Theorem 1, we have∫ {
I(⟨Xi, f ⟩ ≤ ⟨Xk, f ⟩) − n−1

n∑
i=1

I(⟨Xi, f ⟩ ≤ ⟨Xk, f ⟩)

}{
I(⟨Xj, f ⟩ ≤ ⟨Xk, f ⟩) − n−1

n∑
i=1

I(⟨Xi, f ⟩ ≤ ⟨Xk, f ⟩)

}
µ1(df )

= −
1
2π

(aijk − ai·k − a·jk + a··k) = −
1
2π

Aijk.

Similarly, we obtain∫ {
I(⟨Yi, g⟩ ≤ ⟨Yk, g⟩) − n−1

n∑
i=1

I(⟨Yi, g⟩ ≤ ⟨Yk, g⟩)

}{
I(⟨Yj, g⟩ ≤ ⟨Yk, g⟩) − n−1

n∑
i=1

I(⟨Yi, g⟩ ≤ ⟨Yk, g⟩)

}
µ2(dg)

= −
1
2π

(bijk − bi·k − b·jk + b··k) = −
1
2π

Bijk.

The above two results yield

2πn−1
n∑

k=1

[∫ ∫ {
F̂ (⟨Xk, f ⟩, ⟨Yk, g⟩) − F̂1(⟨Xk, f ⟩)F̂2(⟨Yk, g⟩)

}2
µ1(df )µ2(dg)

]
= n−3

n∑
i,j,k=1

AijkBijk.

his completes the proof. □

roof of Theorem 3. Let (X i, Y i), 1 ≤ i ≤ 7, be independent copies of (X, Y ). Denote W = (X, Y ), Wi = (X i, Y i), 1 ≤ i ≤ 7
and

pQ (Z1, Z2, Z3, Z4, Z5) = θQ (Z1, Z2, Z3) − θQ (Z1, Z4, Z3) − θQ (Z2, Z5, Z3) + θQ (Z4, Z5, Z3),

where, Zi ∈ H1 or Zi ∈ H2, i = 1, . . . , 5, Q = Q1 or Q2 accordingly. Since 0 ≤ θ ≤ π , then

h
(
(X1, Y 1), . . . , (X7, Y 7)

)
:= pQ1 (X

1, X2, X3, X4, X5)pQ2 (Y
1, Y 2, Y 3, Y 6, Y 7)

is integrable, that is, Eh
(
(X1, Y 1), . . . , (X7, Y 7)

)
< ∞. Thus, Fubini’s theorem shows that

Eh
(
(X1, Y 1), . . . , (X7, Y 7)

)
= Acov2(X, Y ).

By definition,

Acov2n(X, Y ) =n−3
n∑

i,j,k=1

AijkBijk

=n−3
n∑ [{

θQ1 (Xi, Xj, Xk) − n−1
n∑

θQ1 (Xi, Xl, Xk) − n−1
n∑

θQ1 (Xr , Xj, Xk) + n−2
n∑

θQ1 (Xr , Xl, Xk)
}

i,j,k=1 l=1 r=1 r,l=1

13
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×
{
θQ2 (Yi, Yj, Yk) − n−1

n∑
s=1

θQ2 (Yi, Ys, Yk) − n−1
n∑

t=1

θQ2 (Yt , Yj, Yk) + n−2
n∑

t,s=1

θQ2 (Yt , Ys, Yk)
}]

=n−7
n∑

i,j,k,l,r,s,t=1

[{
θQ1 (Xi, Xj, Xk) − θQ1 (Xi, Xl, Xk) − θQ1 (Xr , Xj, Xk) + θQ1 (Xr , Xl, Xk)

}
×

{
θQ2 (Yi, Yj, Yk) − θQ2 (Yi, Ys, Yk) − θQ2 (Yt , Yj, Yk) + θQ2 (Yt , Ys, Yk)

}]
=n−7

n∑
i,j,k,l,r,s,t=1

pQ1 (Xi, Xj, Xk, Xl, Xr )pQ2 (Yi, Yj, Yk, Ys, Yt ) = n−7
n∑

i,j,k,l,r,s,t=1

h ((Xi, Yi), . . . , (Xt , Yt ))

=n−7
n∑

i,j,k,l,r,s,t=1

h̄(Wi, . . . ,Wt ),

where h̄(W1, . . . ,W7) =
1
7!

∑
h(Wπ (1), . . . ,Wπ (7)) with the summation over all permutations (π (1), . . . , π (7)) of

{1, . . . , 7}. Hence Acov2n(X, Y ) is V -statistics for the kernel h̄ of degree 7. Since h is bounded by 16π2, Eh̄|(Wi, . . . ,Wt )|< ∞

for all 1 ≤ i, . . . , t ≤ 7. By the strong law of large number for V -statistics (Theorem 3.3.1 of [9]), Acov2n(X, Y ) converges
to Acov2(X, Y ) almost surely. □

Proof of Theorem 4. (i) We use the same notation as in the proof of Theorem 3. Let

h̄1 ((x, y)) = E
{
h̄
(
(x, y), (X2, Y 2), . . . , (X7, Y 7)

)}
, ζ1 = var(h̄1((X, Y )))

h̄2
(
(x, y), (x′, y′)

)
= E

{
h̄
(
(x, y), (x′, y′), (X3, Y 3), . . . , (X7, Y 7)

)}
.

Under H0, we have

E
{
h
(
(X1, Y 1), . . . , (X7, Y 7)

)
|(X1, Y 1)

}
=E

{(
θQ1 (X

1, X2, X3) − θQ1 (X
1, X4, X3) − θQ1 (X

2, X5, X3)

+ θQ1 (X
4, X5, X3)

)
|X1

}
× E

{(
θQ2 (Y

1, Y 2, Y 3) − θQ2 (Y
1, Y 6, Y 3) − θQ2 (Y

2, Y 7, Y 3)

+ θQ2 (Y
6, Y 7, Y 3)

)
|Y 1

}
=0.

Similarly, E
{
h
(
(X1, Y 1), . . . , (X7, Y 7)

)
|(X i, Y i)

}
= 0 for i ∈ {2, . . . , 7}. This means that

E
{
h̄
(
(X1, Y 1), . . . , (X7, Y 7)

)
|(X1, Y 1)

}
= 0.

Hence ζ1 = 0. On the other hand, we can verify that

h̄2
(
(x, y), (x′, y′)

)
=

1
21

E
{(

θQ1 (x, x
′, X3) − θQ1 (x, X

4, X3) − θQ1 (x
′, X5, X3) + θQ1 (X

4, X5, X3)
)}

× E
{(

θQ2 (y, y
′, Y 3) − θQ2 (y, Y

6, Y 3) − θQ2 (y
′, Y 7, Y 3) + θQ2 (Y

6, Y 7, Y 3)
)}

= :
1
21

g1(x, x′)g2(y, y′).

It can be verified that var
{
h̄2

(
(X1, Y 1), (X2, Y 2)

)}
> 0. To see this, it is enough to show that both g1(X1, X2) and g2(Y 1, Y 2)

are not degenerate. It is easy to know E
{
g1(X1, X2)

}
= 0, E

{
g2(Y 1, Y 2)

}
= 0. We just prove E

{
g2
1 (X

1, X2)
}

> 0, and
E
{
g2
2 (Y

1, Y 2)
}

> 0 can be obtained similarly. For simple, we drop the Q1. It can be shown with some computations that

E
{
g2
1 (X

1, X2)
}

= E1,2E2
3θ (X

1, X2, X3) − 2E1E2
2,3θ (X

1, X2, X3) + E2
1,2,3θ (X

1, X2, X3)

= E1,2
{
E3θ (X1, X2, X3) − E2,3θ (X1, X2, X3)

}2
− E1

{
E2,3θ (X1, X2, X3) − E1,2,3θ (X1, X2, X3)

}2

= E1,2
{
E3θ (X1, X2, X3) − E2,3θ (X1, X2, X3)

}2
− E1

[
E2

{
E3θ (X1, X2, X3) − E2,3θ (X1, X2, X3)

}]2
≥ 0

where EI means the expectation is taken over the joint distribution of the variables in set I . The last inequality is obtained
by Jensen’s inequality, that is,

E
{
E θ (X1, X2, X3) − E θ (X1, X2, X3)

}2
≥

[
E

{
E θ (X1, X2, X3) − E θ (X1, X2, X3)

}]2
,
2 3 2,3 2 3 2,3

14
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a

n

n

nd equality holds if and only if E3θ (X1, X2, X3) − E2,3θ (X1, X2, X3) = 0 almost surely with respect to the distribution of
X2. Thus, E

{
g2
1 (X

1, X2)
}

> 0 since E3θ (X1, X2, X3) is non-degenerate.
Therefore, Acov2n(X, Y ) is a degenerate V -statistic of rank 2. Since h̄2 is bounded, we have Eh̄2

2 < ∞. Let τis be the
eigenvalues of the map that sends l ∈ L2(H1 × H2, Λ) to the function

l(x, y) ↦→

∫
h̄2

(
(x, y), (x′, y′)

)
l(x′, y′)dΛ(x′, y′),

where Λ is the joint probability measure of X and Y , and L2(H1 ×H2, Λ) denotes the space of square integrable functions
on H1 × H2 with respect to Λ. Then, by the theory of degenerate V -statistics (see Theorem C.9 in the supplementary
material of [13]),

nAcov2n(X, Y )
d

−→
7 × (7 − 1)

2

∞∑
i=1

τiZ2
i ,

as n → ∞, where Zis are independent standard normal variables. Let γi = 21τi, we have nAcov2n(X, Y )
d

−→
∑

∞

i=1 γiZ2
i , as

→ ∞.
(ii) If X and Y are dependent, then Acov2(X, Y ) > 0. By the standard theory of V -statistics (see page 212 in [17]),

1/2
{Acov2n(X, Y ) − Acov2(X, Y )} = 7n−1/2 ∑n

i=1[h̄1 ((Xi, Yi)) − Acov2(X, Y )] + op(1). Since [h̄1 ((Xi, Yi)) − Acov2(X, Y )] are
i.i.d., by central limit theorem and Slutsky’s theorem, we have

n1/2
{Acov2n(X, Y ) − Acov2(X, Y )}

d
−→ N(0, 72ζ1),

where ζ1 = E[h̄1 ((Xi, Yi)) − Acov2(X, Y )]2. □
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