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Abstract
A conventional regression model for functional data involves expressing a response 
variable in terms of the predictor function. Two assumptions, that (i) the predictor 
function and the error are independent and (ii) the relationship between the response 
variable and the predictor function takes functional linear model, are usually added 
to the model. Checking the validation of these two assumptions is fundamental to 
statistic inference and practical applications. We develop a test procedure to check 
these assumptions simultaneously based on generalized distance covariance. We 
establish the asymptotic theory for the proposed test under null and alternative 
hypotheses, and provide a bootstrap procedure to obtain the critical value of the test. 
The proposed test is consistent against all alternatives provided that the semimetrics 
related to the generalized distance are strong negative, and can be readily gener-
alized to other functional regression models. We explore the finite sample perfor-
mance of the proposed test by using both simulations and real data examples. The 
results illustrate that the proposed method has favorable performance compared with 
the competing method.

Keywords  Functional linear model · Generalized distance covariance · Goodness-
of-fit · Independence test · Strong negative type space

1  Introduction

With technology development, increasingly complex and high dimensional data have 
been produced. Within these data, a large fraction can be characterized as functional 
data. Usually, these functions are defined on a 1-dimensional Euclidean domain, 
but functions defined on higher dimensional domains such as 2d and 3d image data 
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or time-space data and functions observed on manifolds are also included in this 
paradigm. There is practical need to study the relationship between two variables 
including functional data (see Ramsay and Silverman 2005). An important tool for 
describing the relationship is regression model

where X is a random element in a functional space, Y is a scalar response, m is the 
regression function, and � is a random error with mean zero. For convenience, we 
assume that the X and Y are centered.

In statistical inference on (1), two additional assumptions are crucial: (i) m(x) 
takes some certain parametric form, for example, the functional linear model 
m(x) = ⟨X, �⟩ and (ii) the error � is independent of X. Choosing the correct paramet-
ric model has a major impact on consistent parameter estimation, accurate predic-
tion and valid policy recommendation (Cai and Hall 2006; Cardot et al. 2007; Hall 
and Horowitz 2007). On the other hand, the independence between X and � plays a 
key role in certain estimation and testing procedures, see Cardot et al. (2003), Hor-
váth and Reeder (2013), Cuesta-Albertos et al. (2019). Among the literature men-
tioned above, most of them suppose that the two assumptions hold simultaneously.

Several goodness-of-fit tests have been proposed for different parametric models 
of functional data. The simple null hypothesis H0 ∶ m(X) = c, where c is a fixed con-
stant, has been studied by Delsol et al. (2011). For functional linear model (FLM) 
m(X) = ⟨X, �⟩ , where ⟨⋅, ⋅⟩ stands for the inner product in a Hilbert space, H0 ∶ � = �0 
has been considered by Cardot et al. (2003), Kokoszka et al. (2008) and Hilgert et al. 
(2013). For the omnibus hypothesis H0 ∶ m(X) ∈ M� = {⟨X, �⟩ ∶ � ∈ H} , where 
H is a Hilbert space, see Patilea et al. (2012), García-Portugués et al. (2014), Patilea 
et al. (2016) and Cuesta-Albertos et al. (2019). Some of these tests assume that the 
error is independent of the predictor X and some others involve tuning parameters 
or random projections. As far as we know, there is no method in the literature to 
test the independence between the predictor X and the error � in the functional data 
setting.

As stated in Sen and Sen (2014), it can be hard to test the goodness-of-fit of the 
parametric model and the independence of X and � separately since they depend 
on each other. To test the independence of X and � , one must estimate � precisely 
enough and this only can be done with assuming that the model is correctly speci-
fied. On the other hand, many goodness-of-fit tests in functional setting crucially 
employ the assumption that X and � are independent. In this paper we aim to check 
the hypothesis that X and � are independent (denoted by X ⟂ � ), and the model is 
functional linear model , that is,

The literature for testing the independence and the goodness-of-fit simultaneously 
is rare even in Euclidean settings. For the case of X being real random vector, 
Sen and Sen (2014) proposed a method serving this purpose when m(x) is a lin-
ear model. Their main idea was based on the test to the independence of the pre-
dictor and the regression residual obtained from the linear parametric fit, using the 

(1)Y = m(X) + �,

(2)H0 ∶ X ⟂ �, m ∈ MH ∶= {⟨⋅, �⟩ ∶ � ∈ H} v.s. H1 ∶ otherwise.
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Hilbert-Schmidt independence criterion (Gretton et al. 2008). For functional linear 
model, their method and results cannot be used directly, since the dimension of the 
functional data is infinite. Hence, a more sophisticated method for testing the inde-
pendence of error and predictor and goodness-of-fit of the functional linear model 
simultaneously is needed.

In this paper, we propose a nonparametric test to check the independence and 
goodness-of-fit jointly for functional linear model by choosing the semimetrics 
defined on the spaces of the predictors and the responses (residuals). Firstly the 
residuals are obtained by fitting the functional linear model, then the test statistic is 
constructed by predictor observations and the residuals, using the generalized dis-
tance covariance (Sejdinovic et  al. 2013) with the chosen semimetrics. We derive 
the asymptotic behaviors of the proposed test statistic under the null and alterna-
tive hypothesis respectively, and provide a bootstrap procedure to obtain the critical 
value of the test. The proposed test enjoys the following properties: (i) The method 
is straightforward and easy to compute, since when the estimator of the slope func-
tion � is given, we only need to compute the distances between points in {Xi}

n
i=1

 
and in residuals {𝜀̂i}ni=1 ; (ii) With the virtue of the generalized distance covariance, 
the proposed test is consistent against all alternatives; (iii) Compared to the random 
projection test of goodness-of-fit given by Cuesta-Albertos et al. (2019), this method 
appears more powerful in most simulated examples in Sect.   3; (iv) The proposed 
test procedure can apply to a large collection of estimators of the slope function � 
and is easily generalized to other functional regression models.

The rest of the paper is organized as follows. In Sect.  2, we establish the test 
procedure, present its asymptotic properties, provide a bootstrap algorithm to deter-
mine the critical value of the test and give some suggestions for choosing suitable 
semimetrics. We explore the finite sample performance by simulations in Sect.  3 
and illustrate real data applications in Sect.  4. In Sect.  5, further discussions are 
included. All technical proofs are presented in the Appendix.

2 � Test procedure and asymptotic properties

In this section, we first define the test statistic for hypothesis (2) using the gener-
alized distance covariance, and then give the asymptotic properties. A bootstrap 
method for obtaining the critical value of the test and some suggestions for choosing 
suitable semimetrics are also presented. We first introduce briefly the generalized 
distance covariance for easy reference.

2.1 � Generalized distance covariance

The following definition of the generalized distance covariance, which has been 
used for testing the independence of two random elements, is according to Sejdi-
novic et al. (2013); see Székely et al. (2007), Székely and Rizzo (2009) and Lyons 
(2013) for more details.
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Let Z be a nonempty set, then a bivariate function � ∶ Z × Z ↦ [0,∞] 
is called a semimetric if �(z, z�) = �(z�, z) , and �(z, z�) = 0 if and only if z = z� , 
for any z, z� ∈ Z . A semimetric space (Z, �) is said to have negative type if 
∀z1,⋯ , zn ∈ Z, a1,⋯ , an ∈ ℝ and n ≥ 2 , with 

∑n

i=1
ai = 0,

Furthermore, we say (Z, �) has strong negative type if it is of negative type and 
satisfies

for any two different probability measures P, Q.
Let (X, �X) and 

(
Y, �Y

)
 be semimetric spaces of negative type, where �X  and 

�Y are semimetrics defined on X  and Y , respectively. Let (Ω,F,P) be a probabil-
ity space, (X, Y) ∶ Ω ↦ X × Y be a random element with joint distribution PXY 
and marginal distributions PX and PY . Further assume that

Then the generalized distance covariance of X and Y is defined as

where (X�, Y �) is an i.i.d. copy of (X, Y). Equivalently, �(X, Y) can be expressed as

where �X�Y is viewed as a function on (X × Y) × (X × Y) . It is not hard to see that 
�(X, Y) ≥ 0 , and if the semimetrics �X and �Y are of strong negative type, then 
�(X, Y) = 0 if and only if X and Y are independent (Lyons 2013).

Given an independent and identically distributed sample (X1, Y1),⋯ , (Xn, Yn) 
from PXY , a straightforward estimator of �(X, Y) according to Definition (3) is

where kij = �X(Xi,Xj) and lij = �Y(Yi, Yj) . Since the predictor and the error are 
independent under the null hypothesis, the generalized distance covariance can be 
employed to detect the discrepancy from the null hypothesis. This leads to the pro-
posed test in the next subsection.

n∑

i,j=1

aiaj�(zi, zj) ≤ 0.

∫ 𝜌(z, z�)d([P − Q] × [P − Q])(z, z�) < 0

E{𝜌2
X
(X,X)} < ∞, E{𝜌2

Y
(Y , Y)} < ∞.

(3)
�(X, Y) = EXYEX�Y ��X

(
X,X�

)
�Y

(
Y , Y �

)
+ EXEX��X

(
X,X�

)
EYEY ��Y

(
Y , Y �

)

−2EXY

[
EX��X

(
X,X�

)
EY ��Y

(
Y , Y �

)]
,

�(X, Y) = ∫ �X(x, x
�)�Y(y, y

�)d([PXY − PXPY ] × [PXY − PXPY ])((x, y), (x
�, y�)),

(4)�n(X, Y) =
1

n2

n∑

i,j

kijlij +
1

n4

n∑

i,j,q,r

kijlqr −
2

n3

n∑

i,j,q

kijliq,
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2.2 � Test statistic and asymptotic properties

Suppose that we observe independent and identically distributed data 
(X1, Y1),⋯ , (Xn, Yn) from model (1). Our goal is to test hypothesis

where L2([0, 1]) denotes the space consisting of square integrable functions on inter-
val [0, 1]. Given an estimate 𝛽  of � under H0 , the residuals are

Denote

where k and l are semimetrics defined on L2([0, 1]) × L2([0, 1]) and ℝ ×ℝ respec-
tively. We consider test statistic

There are many estimators of � that can be chosen for the above construction. For 
example, Hall and Horowitz (2007) proposed the least square estimator based on 
functional principal components and obtained the optimal convergence rate of the 
estimator. Crambes et al. (2009) studied smoothing spline estimator for functional 
linear models. Yuan et al. (2010); Cai and Yuan (2012) obtained the optimal con-
vergence rate of the estimator for slope function in the framework of reproducing 
kernel Hilbert space.

The convergence rate of the estimator 𝛽  has a major impact on the asymptotic 
behaviors of Tn . To investigate the asymptotic behaviors of the test statistic with 
different estimators, we consider two scenarios: (i) 

√
n(𝛽 − 𝛽) converges in dis-

tribution to an random element in L2([0, 1]) ; (ii) ‖𝛽 − 𝛽‖ converges in probability 
to zero, where ‖ ⋅ ‖ denotes the norm in L2([0, 1]) . Scenario (i) usually happens in 
the setting that � or X is of finite dimension, while scenario (ii) is just declaring 
the L2 consistency of the estimator, which is satisfied by most useful estimators 
of � . As is well known, for general functional linear models, it is impossible for 
𝛽 − 𝛽 to converge in distribution to a non-degenerate random element in the norm 
topology of L2([0, 1]) (see Theorem 1 in Cardot et al. 2007), thus we turn to the 
consistency of the test in scenario (ii), rather than the null asymptotic distribution 
of Tn.

We first explore the scenario (i). Let Xs , s = 1,⋯ , 4 and �q , q = 1, 2 be inde-
pendent copies of X and � , respectively. Denote the partial derivatives of l(x, y) as 
lx(x, y) = �xl(x, y) , lxy = �x�yl(x, y) , etc. Assume the following conditions for H0 . 

C1:	
√
n(𝛽 − 𝛽) =

1√
n

∑n

i=1
𝜓(Zi) + op(1) , where Zi = (Xi, �i) and � is a function from 

L2([0, 1]) ×ℝ to L2([0, 1]) satisfying E[‖𝜓(Z)‖2] < ∞.

H0 ∶ X ⟂ �, m ∈ ML2([0,1]) =
�
⟨⋅, �⟩ ∶ � ∈ L2([0, 1])

�
,

𝜀̂i = Yi − ⟨Xi, 𝛽⟩, i = 1,⋯ , n.

kij = k(Xi,Xj), lij = l(𝜀̂i, 𝜀̂j),

(5)Tn =
1

n2

n∑

i,j

kijlij +
1

n4

n∑

i,j,q,r

kijlqr −
2

n3

n∑

i,j,q

kijliq.
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C2:	 (a)	 l(⋅, ⋅) is second order differentiable and lxx , lyy , lxy satisfy the Lip-
schitz continuous condition, that is, using lxx as an example, 

 where ‖(x, y)‖∞ = max{�x�, �y�} , x, y ∈ ℝ and L is a positive constant.
(b)	 E[�k(Xq,Xr)�(‖Xs‖ + ‖Xt‖)3] < ∞ ,    (1 ≤ q, r, s, t ≤ 4);
(c)	 E[g2(𝜀q, 𝜀r)] < ∞ , for 1 ≤ q, r ≤ 2 , g = l, lx, ly, lxx, lxy, lyy.
(d)	 E[k2(Xq,Xr)] < ∞ , for 1 ≤ q, r ≤ 2;
(e)	 E[k2(Xq,Xr)‖Xs‖‖Xt‖] < ∞ , for 1 ≤ q, r, s, t ≤ 4.

Theorem 1  Suppose that conditions C1 and C2 hold. Then, under H0,

where Zj are i.i.d. N(0, 1) random variables, G ∈ L2([0, 1]) is the limiting element 
of 

√
n(𝛽 − 𝛽) , that is 

√
n(𝛽 − 𝛽)

d
−→G ; N  is a random element in L2([0, 1]) , Λ is a 

bounded linear operator from L2([0, 1]) to L2([0, 1]) , �i’s are eigenvalues of an oper-
ator, and the definitions of the last three quantities are given in the proof of Theorem  
1.

Remark 1  Condition C1 usually holds for most estimating methods when the dimen-
sion of � is finite, since in this case we can convert the functional linear model into 
an ordinary linear model, and most estimating methods for the later model satisfy 
C1 . Condition C2(a), (b) are required when dealing with the negligibility of the 
remainder term in the proof of Theorem  1, and condition C2(c),(d),(e) are basic 
assumptions for the convergence of the V-statistics which are the components of the 
test statistic, see the proof of Theorem  1.

Remark 2  Theorem  1 has a similar assertion with Theorem  3.1 of Sen and Sen 
(2014) which was for the test of analogy of hypothesis (2) in ordinary linear models.

To investigate the behaviour of Tn in scenario (ii), assume the following condi-
tions for H0 . 

C3:	‖𝛽 − 𝛽‖ = op(1).

C4:	 (a)	 l(⋅, ⋅) is first order differentiable almost surely and lx , ly satisfy the 
Lipschitz continuous condition.

(b)	 E[�k(Xq,Xr)�(‖Xs‖ + ‖Xt‖)2] < ∞ ,    (1 ≤ q, r, s, t ≤ 4).
(c)	 E[|g(𝜀q, 𝜀r)|] < ∞ , for 1 ≤ q, r ≤ 2 , g = l, lx, ly.
(d)	 E[|k(Xq,Xr)|] < ∞ , for 1 ≤ q, r ≤ 2.
(e)	 E[�k(Xq,Xr)� ⋅ ‖Xs‖] < ∞ , for 1 ≤ q, r, s ≤ 4.

�lxx(x�, y�) − lxx(x, y)� ≤ L‖(x�, y�) − (x, y)‖∞,

nTn
d
→6

∞�

j=1

�jZ
2
j
+ ⟨G,N⟩ + ⟨Λ(G),G⟩
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Theorem 2  Suppose that conditions C3–C4 hold. Then, under H0,

Remark 3  Note that the condition C4 is less strict than condition C2 , this is because 
in the proof of Theorem 2 we only need the weak law of large number for V-sta-
tistics while in the proof of Theorem  1 we need the central limiting theorem for 
V-statistics.

To study the behaviors of Tn under alternative hypothesis, we divide the alterna-
tive into three sub-hypotheses:

Suppose that 𝛽 = arg inf𝛽 E[(Y − ⟨X, 𝛽⟩)2] exists uniquely. The estimator 𝛽  consid-
ered here is the corresponding estimator based on least square and functional prin-
cipal components, see Hall and Hosseini-Nasab (2006); Hall and Horowitz (2007). 
Denote 𝜖 = m(X) − ⟨X, 𝛽⟩ + 𝜀 . If m ∈ ML2([0,1]) , then � = � . We assume the follow-
ing conditions for H1,1 , H1,2 and H1,3 . 

C5:	Let C be some constant (can be distinct in different conditions), {�j}∞j=1 and {�j}∞j=1 
be the eigenvalues and eigenfunctions of the covariance operator of X, and 
�j = ⟨X, �j⟩ .

(a)	� E
�
‖X‖4

�
< ∞ , E

[
�4
j

] ≤ C�2
j
 , for all j, and � is a continuous random variable 

with E(�) = 0 and var(�) ≤ C.
(b)	� The eigenvalues {�j}

∞
j=1

 satisfy, for all j, C−1j−a ≤ �j ≤ Cj−a and 
�j − �j+1 ≥ C−1j−a−1, where a > 1.

(c)	� |
⟨
𝛽, �j

⟩
| < Cj−b , b >

a

2
+ 1.

(d)	� There exists C1,C2 > 0 , C1n
1

a+2b < kn < C2n
1

a+2b , where kn is the number of 
functional principal components to obtain the estimator 𝛽 .

 

C6:	 (a)	 Both semimetrics k, l have strong negative type.
(b)	 E[|m(X)|2] < ∞.
(c)	 Under H1,2 and H1,3 , m(X) − ⟨X, 𝛽⟩ is a non-constant function of X.

Theorem 3  Suppose that conditions C4, C5, C6 and one of H1,1 , H1,2 and H1,3 hold. 
Then

where 𝜏 = 𝜃(X, 𝜖) > 0 is a constant.

Tn
p
→0.

H1,1 ∶ X ̸⟂ �,m ∈ ML2([0,1]), H1,2 ∶ X ⟂ �,m ∉ ML2([0,1]), H1,3 ∶ X ̸⟂ �,m ∉ ML2([0,1]).

Tn
p
→�,
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Remark 4  Conditions in C5 are parallel to those in Hall and Horowitz (2007), which 
are required to obtain the proper convergent rate of ‖𝛽 − 𝛽‖ . Condition C6(a) guar-
antees that the generalized distance covariance can detect the dependence between 
X and � . Condition C6(c) means that when the regression function is not the form 
of ⟨X, �⟩ , the difference m(X) − ⟨X, 𝛽⟩ and X are dependent. Condition C6(b) is a 
moment condition required for the consistency of 𝛽  . When the model is not linear, 
the estimator 𝛽  can still approximate 𝛽  well. We can interpret ⟨X, 𝛽⟩ as the closest 
function to m in ML2([0,1]).

Remark 5  Note that, by the result of Hall and Horowitz (2007), the estimator 𝛽  sat-
isfies the condition C3 under H0 . Although Theorem 3 is established based on the 
classical estimator of functional linear model using least squares and functional 
principal components, the result can be extended to other estimators, for example, 
the m-estimator proposed in Huang et al. (2014) as well.

Now we give the test procedure based on Tn . Denote the null distribution function 
of Tn by Fn . Then, we reject H0 if

where � is the significance level of the test. By the results of Theorems 2 and 3 and 
the Lemma 14.15 of van der Vaart (2000), this test is consistent against any alterna-
tive hypothesis. Since the distribution function Fn is unknown, we introduce a boot-
strap method to approximate the critical value cn,� in the next subsection.

2.3 � Bootstrap procedure and the choice of semimetrics

In this subsection, we first provide a bootstrap procedure to find the critical value of 
the proposed test, and then give some suggestions to find suitable semimetics k and 
l.

Algorithm (bootstrap for the critical value)
1. Let ℙn,�0 be the empirical distribution of centered residuals, i.e.,

where 𝜀̂i is residual described in Section 2.2 and 𝜀̂ = n−1
∑n

i=1
𝜀̂i.

2. Generate an independent and identically distributed bootstrap sample {
X∗
in
, �∗

in

}
1≤i≤n of size n from the measure ℙn = ℙn,X × ℙn,�o where ℙn,X is the empiri-

cal distribution of the observed Xi’s.
3. Define

where 𝛽n is a given estimator. Compute the bootstrapped estimator 𝛽∗
n
 by the same 

method of 𝛽n with the bootstrap sample 
(
Y∗
in
,X∗

in

)
 , and the bootstrap residuals

(6)Tn > cn,𝛼 ∶= F−1
n
(1 − 𝛼),

𝜀o
i
= 𝜀̂i − 𝜀̂ (i = 1,… , n)

Y∗
in
= ⟨X∗

in
, 𝛽n⟩ + 𝜀∗

in
(i = 1,… , n)

Author's personal copy
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4. Compute the bootstrap test statistic T∗
n
 by (5) using X∗

in
 and 𝜀̂∗

in
 , i = 1,⋯ , n.

5. Repeat steps 1 − 4 for B times and collect the T∗
n
 values as {T∗b

n
}B
b=1

 . Then 
take the (1 − �) th quantile c∗

n,�
 of {T∗b

n
}B
b=1

 as the critical value of the test with a 
significant level � . Thus we reject the null hypothesis when Tn > c∗

n,𝛼
 . Or alterna-

tively, when the corresponding p-value, defined as 1
B

∑B

b=1
1{T∗b

n
≥Tn}, is less than 

the given significant level, we reject the null hypothesis.
Now we discuss the choice of the semimetrics. It is obvious that Tn depends 

on the semimetrics k and l, and the choice of them influences the practical per-
formance of the test. From Theorem  3, the semimetrics of strong negative type 
should be considered to keep the test’s consistency. The concept of strong nega-
tive type for semimetrics is related to the term of characteristic kernel. A kernel 
h(⋅, ⋅) on Z × Z is characteristic if and only if the map

is injective on the space of all finite signed Borel measures on Z for which 
∫ |h(z, z)|d|v|(z) < ∞ . By the result of Sejdinovic et al. (2013), if h is a characteristic 
kernel defined on L2([0, 1]) × L2([0, 1]) or ℝ ×ℝ , then

is a strong negative type semimetric. There are many characteristic kernels that 
have been studied, such as Gaussian kernel h(z, z�) = exp(−�−1‖z − z�‖2) , Laplace 
kernel h(z, z�) = exp(−�−1‖z − z�‖) , 𝜎 > 0 , resulting the corresponding semimet-
rics �(z, z�) = 2 − 2 exp(−�−1‖z − z�‖2) and �(z, z�) = 2 − 2 exp(−�−1‖z − z�‖) , 
where the parameter � can be determined by the median of ‖Zi − Zj‖2 or ‖Zi − Zj‖ , 
1 ≤ i < j ≤ n , respectively. For more details on characteristic kernels, see Fuku-
mizu et  al. (2009), Sriperumbudur et  al. (2008) and Sriperumbudur et  al. (2010). 
We can also find more strong negative type semimetrics from the results of 
Lyons (2013), for example �(z, z�) = ‖z − z�‖ . We use �(z, z�) = ‖z − z�‖ and 
�(z, z�) = 2 − 2 exp(−�−1‖z − z�‖2) for our simulations.

Remark 6  If we choose the semimetrics constructed by Gaussian kernel, i.e. 
k(x, x�) = 2 − 2 exp(−�−1‖x − x�‖2) and l(�, ��) = 2 − 2 exp(−�−1‖� − ��‖2) , then k 
and l satisfy conditions C2(a),(c),(d) and C4(a),(c),(d) since k, l and l’s partial deriv-
atives are bounded. And conditions C2(b),(e) and C4(b),(e) are implied by the sim-
pler condition E‖X‖3 < ∞ . If we choose k(x, x�) = ‖x − x�‖ and l(�, ��) = |� − ��| , 
then conditions C2(a) and C4(a) hold since l has second order Taylor expansion 
almost surely (the exceptional set is {(�, ��) ∶ � = ��}) . Conditions C2(b),(d),(e) are 
implied by condition E‖X‖4 < ∞ ; Conditions C4(b)(d)(e) are implied by condition 
E‖X‖3 < ∞ ; Condition C2(c) is implied by condition E|𝜀|2 < ∞ ; Condition C4(c) is 
implied by condition E|𝜀| < ∞.

𝜀̂∗
in
= Y∗

in
− ⟨X∗

in
, 𝛽∗

n
⟩ (i = 1,… , n).

v ↦ ∫ h(⋅, z)dv(z)

(7)�(z, z�) = h(z, z) + h(z�, z�) − 2h(z, z�), z, z� ∈ L2([0, 1]) or ℝ
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3 � Simulation studies

In this section we explore the finite sample performance of the proposed test in three 
examples. The first is to test the independence between predictor X and error � , pro-
vided that the regression model is functional linear model; the second is to test the 
goodness-of-fit of the functional linear model assuming that X and � are independ-
ent; and the last is concerned with the situation that both independence of predictor 
and error and the linearity of the regression functional are invalid. The estimator 
of � used in this part is based on least squares and functional principal components 
(Hall and Horowitz 2007), and the tuning parameter kn (see Condition C5(d)) is 
derived by minimizing a Schwarz-type information criterion, which is implemented 
by the fregre.pc.cv function in fda.usc R package.

To examine the performance of different semimetrics, we consider two couples 
of semimetrics, k(x, x�) = ‖x − x�‖ , l(�, ��) = |� − ��| and k(x, x�) = 2 − 2e−�

−1‖x−x�‖2 , 
l(�, ��) = 2 − 2e−�

−1|�−��|2 for the proposed method, where � is determined by the 
median criterion described in Section 2.3. The corresponding tests are denoted as 
T1 and T2 respectively. We will compare our tests with CvM , the test of Cuesta-
Albertos et al. (2019) using 3 projections as the authors suggested. The CvM test is 
implemented by rp.flm.test function in fda.usc R package. We consider the following 
model, which is used in Cuesta-Albertos et al. (2019) for other purpose,

where �Δ(X) presents a deviation from the linear model, and the val-
ues of them considered in the simulations are presented in Table  1, with 
Δ1(X) ∶= ‖X‖, Δ2(X) ∶= 25 ∫ 1

0
∫ 1

0
sin(2�ts)s(1 − s)t(1 − t)X(s)X(t)dsdt , and 

Δ3(X) ∶=
⟨
e−X ,X2

⟩
 . In order to examine the impact of the underlying processes of 

predictor and the different slope functions, nine scenarios are designed, which are 
also presented in Table 1. The underlying processes of X, indexed in [0, 1], include 5 
types, which are described in the following: 

Y = ⟨X, �⟩ + �Δ(X) + �,

Table 1   Simulation scenarios

Scenario Coefficient �(t) Process X Deviation

S1 (2�1(t) + 4�2(t) + 5�3(t))∕
√
2 BM Δ = Δ1 , � = 0, 0.50, 0.75

S2 (2𝜓̃1(t) + 4𝜓̃2(t) + 5𝜓̃3(t))∕
√
2 BB Δ = Δ2 , � = 0,−2.00,−7.50

S3 (2�2(t) + 4�3(t) + 5�7(t))∕
√
2 BM Δ = Δ1 , � = 0,−0.30,−0.50

S4 ∑20

j=1
23∕2(−1)jj−2�j(t)

HHN(l = 1) Δ = Δ2 , � = 0,−3.00,−5.00

S5 ∑20

j=1
23∕2(−1)jj−2�j(t)

HHN(l = 2) Δ = Δ2 , � = 0,−1.50,−3.00

S6 log(15t2 + 10) + cos(4�t) BM Δ = Δ1 , � = 0, 0.50, 1.00

S7 sin(2�t) − cos(2�t) OU Δ = Δ2 , � = 0,−0.05,−0.10

S8 t − (t −
3

4
)2 OU Δ = Δ3 , � = 0,−0.01,−0.10

S9 �2(t2 −
1

3
) GBM Δ = Δ3 , � = 0, 2.50, 5.00
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BM.	� The Brownian motion, denoted as � in the following, with eigenfunctions 
�j(t) ∶=

√
2 sin((j −

1

2
)�t) , j ≥ 1.

HHN.	� The functional process from Hall and Hosseini-Nasab (2006), 
X(t) =

∑20

j=1
�j�j(t) , where �j(t) ∶=

√
2 cos(j�t) and �j ∼ N(0, j−2l) 

( l = 1, 2 ) are independent random variables.
BB.	� Brownian bridge, X(t) = �(t) − t�(1) , whose eigenfunctions are 

𝜓̃j(t) ∶= 𝜓
j+

1

2

(t) , j ≥ 1.
OU.	� Ornstein-Uhlenbeck process, that is, Gaussian process with zero mean and 

covariance Cov[X(t),X(s)] = �2

2�
e−�(s+t)(e2�min(s,t) − 1) . Here we choose 

� =
1

3
 , � = 1 , and X(0) ∼ N(0,

�2

2�
).

GBM.	� Geometric Brownian motion, X(t) = s0 exp{(� −
�2

2
)t + ��(t)} . Here we 

let � = 1 , � =
1

2
 , and s0 = 2.

 To examine the performance of the tests under full observation and sparse observa-
tion, we consider 101 and 17 equidistant observation points for every sample curve 
of X. We conduct 1000 Monte Carlo trials and 200 bootstrap replicates at the signifi-
cance level 0.05 for all examples.

Example 1  Consider the following data generating mechanism. Generate data from 
model Y = ⟨X, �⟩ + � ( � = 0 ), where X and � take values in Table  1 and 
��X ∼ N(0, �2 + �‖X‖2) with � = 0, 0.01, 0.05 , where �2 is defined by 
Var[⟨X,�⟩]

Var[⟨X,�⟩]+�2
= 0.95.

The results are summarized in Tables  2 and 3. For the full observation design 
(101 points), when � = 0 , which indicates the independence of predictor and the 
error ( H0 holds), the empirical sizes of T1 and T2 are close to the significance level, 
which performs better than that of CvM . When � ≠ 0 , the predictor and the error 
are dependent. From Table 2, the powers of T1 and T2 increase as the parameter � 
increases or the sample size gets larger, while the CvM totally loses the efficiency. 
This is not surprising as the CvM is designed for testing the linearity of the regres-
sion model, not for testing independence of predictor X and error � . For the sparse 
design (17 points), from Table 3, the performance of all the tests is similar to that in 
the full observation, except that the powers of T1 and T2 slightly decrease. When the 
observation points of X are sparse, the accuracy of 𝛽  decreases, which would impact 
the powers of T1 and T2 . In this example T1 and T2 perform very similar, and they are 
dominated in different scenarios, respectively.

Example 2  In this example, we test the goodness-of-fit of the functional linear 
model, provided that the predictor and the error are independent. Generate data from 
model

where X and � are independent, � , X, � , Δ take values in Table 1 and the error � is a 
normal distribution N

(
0, �2

)
 with �2 satisfying R2 =

Var[⟨X,�⟩]
Var[⟨X,�⟩]+�2

= 0.95.

Y = ⟨X, �⟩ + �Δ(X) + �,
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The results are summarized in Tables  4 and 5, where Delta=1 means that � 
takes the second value in every scenario in Table 1 and Delta=2 is defined sim-
ilarly, for example, in scenario S1 , Delta=1 means � = 0.5 and Delta=2 means 
� = 0.75 . From Tables 4 and 5, the tests T1 and T2 , based on our test procedure, 
have higher powers than the tests based on CvM in almost all scenarios, espe-
cially in scenarios 2, 4 and 6. In most scenarios, T1 performs slightly better than 
T2 . The powers of all tests increase when the sample size gets larger or the devia-
tion increases. It is worth noting that when the observation points of X become 
sparse, the powers of the tests are almost the same as those in full observation.

Example 3  In this example, we study the power performance when both independ-
ence and linear model are invalid. The data are generated by the same setting of 
Example  2 except that the predictor X and the error are dependent, satisfying 
��X ∼ N(0, �2 + 0.03‖X‖2).

Tables 6 and 7 summary the powers of the tests. The tests T1 and T2 have higher 
powers than the test CvM in all scenarios. Comparing to the results in Example 2, 
the tests based on CvM suffer a dramatic loss of power when the predictor and 

Table 2   Empirical sizes and powers of the tests in Example 1 with 101 equidistant observation points for 
every sample curve X(t)

Scenario � = 0 � = 0.01 � = 0.05

T
1

T
2

CvM T
1

T
2

CvM T
1

T
2

CvM

n = 30 S1 0.043 0.045 0.064 0.301 0.249 0.085 0.264 0.267 0.081
S2 0.027 0.038 0.079 0.170 0.135 0.079 0.150 0.171 0.090
S3 0.025 0.044 0.091 0.264 0.251 0.097 0.285 0.312 0.053
S4 0.039 0.029 0.070 0.122 0.138 0.064 0.179 0.193 0.062
S5 0.047 0.041 0.042 0.248 0.226 0.056 0.354 0.425 0.056
S6 0.037 0.030 0.041 0.222 0.217 0.047 0.282 0.310 0.051
S7 0.059 0.043 0.069 0.363 0.433 0.060 0.365 0.455 0.050
S8 0.056 0.039 0.033 0.358 0.403 0.058 0.369 0.440 0.070
S9 0.031 0.045 0.082 0.227 0.250 0.070 0.324 0.340 0.080

n = 50 S1 0.047 0.046 0.054 0.363 0.415 0.080 0.397 0.500 0.080
S2 0.027 0.045 0.060 0.220 0.229 0.057 0.195 0.296 0.080
S3 0.022 0.039 0.071 0.392 0.457 0.064 0.408 0.513 0.081
S4 0.032 0.033 0.070 0.193 0.244 0.059 0.232 0.311 0.042
S5 0.048 0.037 0.040 0.346 0.368 0.065 0.522 0.677 0.046
S6 0.040 0.052 0.041 0.257 0.310 0.045 0.382 0.530 0.035
S7 0.049 0.047 0.059 0.542 0.727 0.068 0.516 0.712 0.064
S8 0.053 0.042 0.046 0.506 0.702 0.058 0.527 0.711 0.070
S9 0.043 0.044 0.100 0.557 0.568 0.098 0.633 0.641 0.087
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the error are dependent. For our tests, things are complicated. It may be antici-
pated that the powers of T1 and T2 should increase when both assumptions in null 
hypothesis are violated. However, in our simulations, the powers in some sce-
narios decrease. This phenomenon might be raised by the masking effect that the 
heteroscedasticity of the error might weaken the identifiability of the some kinds 
of nonlinearity hidden in the observations. This also happens in the diagnosis of 
ordinary linear models. Furthermore, the results in Tables 6 and 7 show the simi-
larity in power performance of T1 and T2 in full observation and sparse observa-
tion designs.

4 � Data applications

In this section, the proposed test is applied to several real datasets. The semimet-
ric used for k and l is �(z, z�) = 2 − 2e−‖z−z

�‖2 , where z, z� ∈ L2([0, 1]) or ℝ . The 
first data set is from Ramsay et al. (2009) and provided in R package fda. It con-
sists of daily temperature and precipitation at 35 different locations in Canada 
for the period 1960 to 1994. The goal is to check whether there is a linear rela-
tionship between the logarithm of annual precipitation for 35 Canadian weather 
stations and their temperature profiles. The p-value of our test is 0.248, while 
the p-value of CvM is 0.310. We assert that the functional linear model is a 

Table 3   Empirical sizes and powers of the tests in Example 1 with 17 equidistant observation points for 
every sample curve X(t)

Scenario � = 0 � = 0.01 � = 0.05

T
1

T
2

CvM T
1

T
2

CvM T
1

T
2

CvM

n = 30 S1 0.046 0.054 0.046 0.181 0.124 0.078 0.257 0.232 0.076
S2 0.023 0.034 0.075 0.096 0.077 0.097 0.146 0.122 0.080
S3 0.031 0.045 0.084 0.209 0.161 0.078 0.272 0.253 0.090
S4 0.027 0.032 0.060 0.068 0.063 0.056 0.138 0.141 0.044
S5 0.036 0.038 0.033 0.086 0.071 0.049 0.230 0.219 0.057
S6 0.040 0.043 0.045 0.098 0.072 0.046 0.202 0.170 0.040
S7 0.046 0.047 0.052 0.367 0.387 0.090 0.396 0.426 0.067
S8 0.037 0.041 0.047 0.362 0.384 0.064 0.361 0.420 0.048
S9 0.033 0.040 0.063 0.189 0.162 0.085 0.284 0.279 0.092

n = 50 S1 0.049 0.045 0.057 0.201 0.171 0.066 0.354 0.392 0.077
S2 0.026 0.045 0.074 0.096 0.097 0.077 0.210 0.206 0.058
S3 0.028 0.046 0.082 0.262 0.288 0.070 0.323 0.424 0.069
S4 0.033 0.037 0.072 0.067 0.080 0.059 0.135 0.186 0.047
S5 0.057 0.049 0.045 0.125 0.102 0.039 0.334 0.348 0.056
S6 0.040 0.042 0.060 0.126 0.126 0.051 0.275 0.306 0.050
S7 0.048 0.046 0.057 0.486 0.646 0.063 0.498 0.678 0.060
S8 0.046 0.045 0.042 0.503 0.634 0.045 0.530 0.688 0.059
S9 0.032 0.050 0.080 0.433 0.343 0.087 0.573 0.560 0.089
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Table 4   Powers of the tests in 
Example 2 with 101 equidistant 
observation points for every 
sample curve X(t)

Scenario Delta = 1 Delta = 2

T
1

T
2

CvM T
1

T
2

CvM

n = 30 S1 0.470 0.312 0.242 0.776 0.600 0.351
S2 0.504 0.399 0.155 0.928 0.850 0.179
S3 0.423 0.297 0.303 0.765 0.532 0.415
S4 0.395 0.370 0.081 0.649 0.596 0.104
S5 0.292 0.178 0.229 0.681 0.480 0.613
S6 0.266 0.193 0.126 0.794 0.662 0.279
S7 0.585 0.365 0.490 0.906 0.723 0.783
S8 0.674 0.550 0.331 0.990 0.984 0.595
S9 0.209 0.173 0.216 0.670 0.572 0.379

n = 50 S1 0.792 0.621 0.337 0.975 0.908 0.546
S2 0.858 0.702 0.154 0.993 0.987 0.251
S3 0.790 0.644 0.529 0.975 0.869 0.736
S4 0.694 0.588 0.137 0.908 0.848 0.193
S5 0.485 0.297 0.436 0.917 0.745 0.841
S6 0.548 0.422 0.193 0.987 0.908 0.486
S7 0.854 0.635 0.782 0.994 0.937 0.963
S8 0.893 0.808 0.531 0.999 0.999 0.686
S9 0.383 0.325 0.284 0.910 0.846 0.522

Table 5   Powers of the tests in 
Example 2 with 17 equidistant 
observation points for every 
sample curve X(t)

Scenario Delta = 1 Delta = 2

T
1

T
2

CvM T
1

T
2

CvM

n = 30 S1 0.458 0.325 0.246 0.763 0.601 0.388
S2 0.513 0.426 0.155 0.929 0.864 0.192
S3 0.374 0.274 0.291 0.762 0.537 0.409
S4 0.382 0.369 0.122 0.621 0.578 0.142
S5 0.246 0.148 0.210 0.686 0.470 0.606
S6 0.282 0.217 0.139 0.773 0.635 0.330
S7 0.571 0.386 0.503 0.901 0.715 0.794
S8 0.671 0.551 0.372 0.987 0.982 0.566
S9 0.203 0.166 0.197 0.679 0.566 0.427

n = 50 S1 0.770 0.594 0.367 0.965 0.893 0.528
S2 0.834 0.683 0.172 0.996 0.984 0.271
S3 0.738 0.616 0.511 0.960 0.853 0.629
S4 0.673 0.586 0.161 0.893 0.845 0.232
S5 0.462 0.295 0.414 0.918 0.748 0.837
S6 0.519 0.389 0.181 0.980 0.909 0.458
S7 0.873 0.638 0.774 0.995 0.942 0.952
S8 0.891 0.792 0.524 1.000 1.000 0.688
S9 0.383 0.312 0.309 0.900 0.855 0.551
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Table 6   Powers of the tests in 
Example 3 with 101 equidistant 
observation points for every 
sample curve X(t)

Scenario Delta = 1 Delta = 2

T
1

T
2

CvM T
1

T
2

CvM

n = 30 S1 0.303 0.289 0.086 0.324 0.335 0.098
S2 0.180 0.177 0.089 0.541 0.480 0.131
S3 0.282 0.287 0.067 0.312 0.320 0.079
S4 0.195 0.193 0.064 0.279 0.270 0.061
S5 0.319 0.346 0.081 0.404 0.380 0.144
S6 0.284 0.283 0.046 0.337 0.340 0.081
S7 0.363 0.426 0.058 0.383 0.433 0.068
S8 0.401 0.435 0.055 0.603 0.611 0.194
S9 0.333 0.345 0.068 0.406 0.399 0.080

n = 50 S1 0.420 0.531 0.084 0.509 0.551 0.129
S2 0.283 0.332 0.084 0.800 0.719 0.120
S3 0.403 0.497 0.082 0.413 0.507 0.107
S4 0.306 0.347 0.051 0.405 0.433 0.072
S5 0.505 0.607 0.096 0.571 0.636 0.194
S6 0.402 0.504 0.063 0.496 0.551 0.091
S7 0.518 0.719 0.068 0.529 0.705 0.058
S8 0.519 0.694 0.062 0.795 0.832 0.292
S9 0.664 0.664 0.079 0.704 0.677 0.108

Table 7   Powers of the tests in 
Example 3 with 17 equidistant 
observation points for every 
sample curve X(t)

Scenario Delta = 1 Delta = 2

T
1

T
2

CvM T
1

T
2

CvM

n = 30 S1 0.369 0.268 0.113 0.426 0.323 0.179
S2 0.335 0.247 0.106 0.870 0.765 0.170
S3 0.304 0.256 0.096 0.365 0.296 0.114
S4 0.259 0.216 0.081 0.437 0.393 0.095
S5 0.289 0.212 0.114 0.468 0.349 0.320
S6 0.251 0.197 0.078 0.475 0.391 0.171
S7 0.357 0.408 0.073 0.370 0.424 0.079
S8 0.405 0.433 0.061 0.826 0.793 0.375
S9 0.362 0.328 0.087 0.546 0.492 0.134

n = 50 S1 0.504 0.443 0.137 0.675 0.556 0.218
S2 0.533 0.427 0.106 0.979 0.939 0.223
S3 0.417 0.418 0.117 0.544 0.512 0.150
S4 0.446 0.419 0.105 0.718 0.646 0.163
S5 0.397 0.326 0.174 0.718 0.575 0.538
S6 0.380 0.354 0.108 0.741 0.621 0.275
S7 0.527 0.685 0.073 0.505 0.676 0.083
S8 0.596 0.721 0.094 0.948 0.928 0.536
S9 0.676 0.605 0.115 0.814 0.734 0.182
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reasonable candidate model for this data. By the property of our test, we can say 
more about the data: no significant evidence for the dependence of temperature 
and the model error.

The second data set considered here is about the series of daily summaries of 
73 Spanish weather stations selected for the period 1980-2009, provided in the 
data set aemet in the R fda.usc package. The dataset contains geographic infor-
mation of each station and the average of daily temperature, daily precipitation 
and daily wind speed for the period 1980–2009. The goal is to check whether 
there is a linear relationship between logarithm of annual precipitation and the 
daily temperature curve, and daily temperature curve and the error are independ-
ent. Using the proposed test, the p-value is 0.010. The CvM method has a close 
p-value 0.012. Hence we reject the null hypothesis. This suggests that the func-
tional linear model is not enough to describe the relationship between logarithm 
of daily precipitation and the daily temperature.

The third data set is gasoline in the refund package in R. This data set consists 
of 60 near infrared spectral curves and octane numbers of 60 gasoline samples. 
The goal is to determine the form of dependence between the octane and the spec-
tral curve. The p-value of our test is 0.010, hence we reject the null hypothesis. 
For the method of CvM, the p-value is 0.650. Consequently, based on results of 
our test and CvM, we may speculate that the octane and the spectral curve satisfy 
functional linear model, but the spectral curve and the error are dependent. For 
further analysis, we should pay more attention when modeling this data by tradi-
tional methods with the assumption that the predictor and error are independent. 
This example also shows how to combine our test with other goodness-of-fit tests 
to find out more about the relationship among data.

5 � Discussion

We have presented a method for testing the independence of the predictor and the 
error and goodness-of-fit for functional linear models simultaneously. The meth-
odology is based on the generalized distance covariance between the predictor 
X and the residual obtained by fitting the functional linear model. From the con-
struction of the test procedure, one can easily extend this procedure by replac-
ing generalized distance covariance with other measures of independence, such as 
ball covariance (Pan et al. 2019). On the other hand, instead of the linear model 
considered here, one can consider other functional regression models such as 
functional partially linear model (Aneiros-Pérez and Vieu 2006), functional quad-
ratic regression model (Horváth and Reeder 2013). Using similar arguments, one 
can construct a similar test procedure for the corresponding model. The imple-
mentation is easy but the related theory might require more efforts.

Acknowledgements  We would like to thank the editor and the anonymous reviewers for thoughtful com-
ments that led to a substantial improvement of the paper. This work is supported by NSFC with grant 
No.11771032.
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Appendix: technical proofs

We prove the theorems in the Appendix with the asymptotic theory of V-statistics, 
which could be found in Koroljuk and Borovskich (1994).

Proof of Theorem 1  We divide the proof into three parts as follows.
Step 1: Decomposition of Tn
Observe that

Based on this and by Taylor expansion it holds

where

for some point (�ij, �ij) on the straight line connecting the two points (𝜀̂i, 𝜀̂j) and 
(�i, �j) on ℝ2 , where L2∗([0, 1]) denotes the space of linear operators from L2([0, 1]) 
to L2([0, 1]) . By (8), Tn can be decomposed in the following way

where

and Rn is the reminder term.
We can express T (p)

n  , p ∈ {0, 1, 2} , as V-statistics of the form

for the symmetrical kernel h(p) defined as

where Zi = (Xi, �i) and the sum is taken over all 4! permutations of (i, j, q, r).
Step 2: Negligibility of the remainder term Rn

𝜀̂i = 𝜀i − ⟨Xi, 𝛽 − 𝛽⟩

(8)lij = l
(0)

ij
+ ⟨𝛽 − 𝛽, l

(1)

ij
⟩ + 1

2
⟨Vij(𝛽 − 𝛽), 𝛽 − 𝛽⟩

l
(0)

ij
= l(𝜀i, 𝜀j), l

(1)

ij
= −{lx(𝜀i, 𝜀j)Xi + ly(𝜀i, 𝜀j)Xj} ∈ L2([0, 1]),

Vij = {lxx(𝜍ij, 𝜏ij)Xi ⊗ Xi + lyy(𝜍ij, 𝜏ij)Xj ⊗ Xj + 2lxy(𝜍ij, 𝜏ij)Xi ⊗ Xj} ∈ L2∗([0, 1]),

(9)Tn = T (0)
n

+ ⟨𝛽 − 𝛽, T (1)
n
⟩ + 1

2
⟨T (2)

n
(𝛽 − 𝛽), 𝛽 − 𝛽⟩ + Rn,

T (p)
n

=
1

n2

n∑

i,j

kijl
(p)

ij
+

1

n4

n∑

i,j,q,r

kijl
(p)
qr

−
2

n3

n∑

i,j,q

kijl
(p)

iq
(p = 0, 1, 2),

l
(2)

ij
= {lxx(𝜀i, 𝜀j)Xi ⊗ Xi + lyy(𝜀i, 𝜀j)Xj ⊗ Xj + 2lxy(𝜀i, 𝜀j)Xi ⊗ Xj},

(10)T (p)
n

=
1

n4

n∑

i,j,q,r

h(p)(Zi, Zj, Zq, Zr),

(11)h(p)(Zi, Zj, Zq, Zr) =
1

4!

(i,j,q,r)∑

(t,u,v,w)

(ktul
(p)
tu + ktul

(p)
vw

− 2ktul
(p)
tv ),
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In this part we will show that

Denote

then

Since ‖
√
n(𝛽 − 𝛽)‖ = Op(1) , we only need to show that ‖Qn‖ = op(1) . Note that Qn 

is the sum of three terms and each of these terms can be shown to converge to zero 
in probability. We will only show the first term, the other two terms can be done in 
a similar way. Using the condition of Lipschitz continuity of lxx , lyy and lxy , we have

Therefore, 1
n2

∑n

i,j
kij(Vij − l

(2)

ij
) is bounded by

By condition C2(b) and the week law of large number for V-statistics,

hence 1
n2

∑n

i,j
kij(Vij − l

(2)

ij
) = op(1) . With similar techniques for the other two terms, 

we obtain ‖Qn‖ = op(1).
Step 3: Finding the limiting distribution
By (9) and (12), it is enough to show that the following term

converges in distribution. By conditions C2(c)-(e), E{|h(p)(Zi, Zj, Zq, Zr)|2} < ∞ for 
1 ≤ i, j, q, r ≤ 4, p = 0, 1 . With calculation, E{h(0)(z1, Z2, Z3, Z4)} = 0 almost surely, 
so the kernel h(0) is degenerate. Denote

(12)nRn

p
−→0.

Qn =
1

n2

n∑

i,j

kij(Vij − l
(2)

ij
) +

1

n4

n∑

i,j,q,r

kij(Vqr − l(2)
qr
)

−
2

n3

n∑

i,j,q

kij(Viq − l
(2)

iq
) ∈ L2∗([0, 1]),

�nRn� =
1

2
�⟨Qn(

√
n(𝛽 − 𝛽)),

√
n(𝛽 − 𝛽)⟩�

≤ 1

2
‖Qn‖‖

√
n(𝛽 − 𝛽)‖2.

‖Vij − l
(2)

ij
‖ ≤L�(𝜀̂i, 𝜀̂j) − (𝜀i, 𝜀j)�∞(‖Xi‖ + ‖Xj‖)2

≤L‖𝛽 − 𝛽‖(‖Xi‖ + ‖Xj‖)3.

L‖𝛽 − 𝛽‖n−2
n�

i,j=1

�kij�(‖Xi‖ + ‖Xj‖)3.

n−2
n�

i,j=1

�kij�(‖Xi‖ + ‖Xj‖)3 = Op(1),

(13)nT (0)
n

+ n⟨𝛽 − 𝛽, T (1)
n
⟩ + 1

2
n⟨T (2)

n
(𝛽 − 𝛽), 𝛽 − 𝛽⟩

Author's personal copy



1 3

Journal of the Korean Statistical Society	

and define the V-statistic S(0)
n

 with kernel h(0)
2

 , that is,

By the standard results of V-statistics, we have

Define the linear operator (Af )(s) = ∫ h
(0)

2
(s, t)f (t)dPX�(t) for 

f ∈ L2(L2([0, 1]) ×ℝ,PX�) , where L2(L2([0, 1]) ×ℝ,PX�) denotes the space consist-
ing of all square integrable functions defined on L2([0, 1]) ×ℝ , and PX� is the joint 
probability measure of X and � . Then the symmetric function h(0)

2
 admits an eigen-

value decomposition

where {�r}∞r=1 and {�r}
∞
r=1

 are the eigenvalues and eigenfunctions of A, respec-
tively, satisfying E[�i(Z)�j(Z)] = �ij . Clearly, we have E[h(0)

2
(Z1, Z1)] =

∑∞

r=1
�r 

and E[h(0)
2
(Z1, Z2)]

2 =
∑∞

r=1
�2
r
 . Since E{|h(0)(Z1, Z2, Z3, Z4)|2} < ∞ , by the results 

in page 182 of Serfling (1980), E[h(0)
2
(Z1, Z2)]

2 < ∞ . Similarly, we also have 
E|h(0)(Z1, Z1)| < ∞ . Hence, �∑∞

r=1
𝛾r� < ∞ and 

∑∞

r=1
𝛾2
r
< ∞ . Note that

In view of this, nS(0)
n

 can be expressed as

Now let us turn to the terms T (1)
n

 and T (2)
n

 in (13). It can be shown that 
E{h(1)(Z1, Z2, Z3, Z4)} = 0 . Define

then, by the standard theory of V-statistics,

Meanwhile, by the weak law of large numbers for V-statistics,

h
(0)

2
(z1, z2) = E{h(0)(z1, z2, Z3, Z4)}

S(0)
n

=
6

n2

n∑

i,j=1

h
(0)

2
(Zi, Zj).

n(T (0)
n

− S(0)
n
)
p
−→0.

h
(0)

2
(z1, z2) =

∞∑

r=1

�r�r(z1)�r(z2),

{n−
1

2

n∑

i=1

�r(Zi)}
2 = n−1

n∑

i=1

n∑

j=1

�r(Zi)�r(Zj).

nS(0)
n

= 6

∞∑

r=1

�r{n
−

1

2

n∑

i=1

�r(Zi)}
2.

h
(1)

1
(z1) = E{h(1)(z1, Z2, Z3, Z4)},

n1∕2T (1)
n

− 4n−1∕2
n∑

i=1

h
(1)

1
(Zi)

p
−→0.
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Recall that 
√
n(𝛽 − 𝛽) =

1√
n

∑n

i=1
𝜓(Zi) + op(1) . According to the multivariate cen-

tral limit theorem and the Theorem 1.4.8 in Vaart and Wellner (1996), the countable 
random sequence

convergences in distribution to the joint Gaussian random sequence

where Zr are i.i.d. N(0,  1) random variables, N  , G are Gauss-
ian random functions in L2([0, 1]) with mean zero and covari-
ance functions cov(N(s),N(t)) = E{16h

(1)

1
(X(s), �)h

(1)

1
(X(t), �)} and 

cov(G(s),G(t)) = E{�(X(s), �)�(X(t), �)} , respectively. Then, by the continuous 
mapping theorem, we have

	�  ◻

Proof of Theorem 2  Recall that

Using Taylor expansion of lij to order 1, we have, almost surely,

where l(0)
ij

= l(�i, �j) and Vij = −{lx(�ij, �ij)Xi + ly(�ij, �ij)Xj} for some point (�ij, �ij) on 
the straight line connecting the two points (𝜀̂i, 𝜀̂j) and (�i, �j) on ℝ2 . By (14), Tn can 
be decomposed in three terms

where T (p)
n  , p = 0, 1 are defined the same as in the proof of Theorem 1 and

Under H0 , the predictor X and the error � are independent, therefore the gen-
eralized distance �(X, �) between X and � is zero. By the condition C4(c)-(e), 

T (2)
n

p
−→E{h(2)(Z1, Z2, Z3, Z4)} ∶= Λ.

�
n−1∕2

n�

i=1

�r(Zi)

�

r≥1
,

�
n−1∕2

n�

i=1

4h
(1)

1
(Zi)

�
,

�
1√
n

n�

i=1

�(Zi)

�

Z = (Zr)r≥1, N, G,

nTn =nT
(0)
n

+ n⟨𝛽 − 𝛽, T (1)
n
⟩ + 1

2
n⟨T (2)

n
(𝛽 − 𝛽), 𝛽 − 𝛽⟩ + op(1)

d
−→6

∞�

j=1

𝛾jZ
2
j
+ ⟨G,N⟩ + ⟨Λ(G),G⟩.

𝜀̂i = 𝜀i − ⟨Xi, 𝛽 − 𝛽⟩.

(14)lij = l
(0)

ij
+ ⟨𝛽 − 𝛽,Vij⟩

(15)Tn = T (0)
n

+ ⟨𝛽 − 𝛽, T (1)
n
⟩ + ⟨𝛽 − 𝛽,Rn⟩

Rn =
1

n2

n∑

i,j

kij(Vij − l
(1)

ij
) +

1

n4

n∑

i,j,q,r

kij(Vqr − l(1)
qr
) −

2

n3

n∑

i,j,q

kij(Viq − l
(1)

iq
).
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E{|h(p)(Zi, Zj, Zq, Zr)|} < ∞ for 1 ≤ i, j, q, r ≤ 4, p = 0, 1 . By the law of large number 
for V-statistics,

Therefore T (1)
n

= Op(1) . Observe that

By condition C3, ‖𝛽 − 𝛽‖ = op(1) . We only need to show that ‖Rn‖ = Op(1) . Note 
that Rn is a sum of three terms and each of these terms can be shown to converge to 
zero in probability. We will only show the first term, the other two terms can be done 
in a similar way. Using the condition of Lipschitz continuity of lx and ly , we have

Therefore, 1
n2

∑n

i,j
kij(Vij − l

(1)

ij
) is bounded by

By condition C4(b) and the week law of V-statistics,

hence 1
n2

∑n

i,j
kij(Vij − l

(1)

ij
) = Op(1) . With similar techniques for the other two terms, 

we obtain ‖Rn‖ = Op(1) . 	�  ◻

Proof of Theorem 3  Let 𝜖i = m(Xi) − ⟨Xi, 𝛽⟩ + 𝜀i . Even though m(x) might not be lin-
ear, ⟨X, 𝛽⟩ is the closest function to m(x) in ML2([0,1]) in the sense of square loss. By 
the consistency of M-estimator (see Corollary 3.2.3 in Vaart and Wellner 1996), the 
estimator 𝛽  convergence in probability to 𝛽  , that is, ‖𝛽 − 𝛽‖ = op(1) . Using Taylor 
expansion, we have, almost surely,

where (�ij, �ij) is some point on the line connecting the two points (𝜀̂i, 𝜀̂j) and (�i, �j) . 
Note that

we can decompose

T (0)
n

p
−→�(X, �) = 0,

T (1)
n

p
−→E{|h(1)(Zi, Zj, Zq, Zr)|}.

⟨𝛽 − 𝛽, T (1)
n
⟩ ≤ ‖𝛽 − 𝛽‖‖T (1)

n
‖,

⟨𝛽 − 𝛽,Rn⟩ ≤ ‖𝛽 − 𝛽‖‖Rn‖.

‖Vij − l
(1)

ij
‖ ≤L�(𝜀̂i, 𝜀̂j) − (𝜀i, 𝜀j)�∞(‖Xi‖ + ‖Xj‖)

≤L‖𝛽 − 𝛽‖(‖Xi‖ + ‖Xj‖)2.

L‖𝛽 − 𝛽‖n−2
n�

i,j=1

�kij�(‖Xi‖ + ‖Xj‖)2.

n−2
n�

i,j=1

�kij�(‖Xi‖ + ‖Xj‖)2 = Op(1),

l(𝜀̂i, 𝜀̂j) = l(𝜖i, 𝜖j) + {(𝜀̂i − 𝜖i)lx(𝜍ij, 𝜏ij) + (𝜀̂j − 𝜖j)ly(𝜍ij, 𝜏ij)},

𝜀̂i − 𝜖i = −⟨Xi, 𝛽 − 𝛽⟩,
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where

and

We will show that T (0)
n

p
−→� , 𝜏 > 0 , ⟨𝛽 − 𝛽, T (1)

n
⟩ = op(1) and Rn = op(1) . By the 

results in the proof of Theorem 2, ⟨𝛽 − 𝛽, T (1)
n
⟩ = op(1) and Rn = op(1).

Now we show that T (0)
n

p
−→� , 𝜏 > 0 . Using the same arguments of proof of Theo-

rem 1, T (0)
n

 is a V-statistic. By the weak law of V-statistics, T (0)
n

 convergence in prob-
ability to generalized distance covariance of X and � , �(X, �) . Under H1,1 , � = � , 
hence X and � are dependent. Under scenarios H1,2 or H1,3 , m(X) ≠ ⟨X, 𝛽⟩ with posi-
tive probability. And the conditional mean of � given X is

With the condition that m(X) − ⟨X, 𝛽⟩ is a non-constant function of X, E(�|X) 
depends on X, and hence X and � are dependent. Since k and l are strong negative 
type, 𝜏 = 𝜃(X, 𝜖) > 0 . 	�  ◻
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